首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microtubules are among the most successful targets of compounds potentially useful for cancer therapy. A new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)-4,5,6,7-tetrahydrothieno[b]pyridine molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. The most promising compound in this series was 2-amino-3-(3,4,5-trimethoxybenzoyl)-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[b]pyridine, which inhibits cancer cell growth with IC(50)-values ranging from 25 to 90 nM against a panel of four cancer cell lines, and interacts strongly with tubulin by binding to the colchicine site. In this series of N(6)-carbamate derivatives, any further increase in the length and in the size of the alkyl chain resulted in reduced activity.  相似文献   

2.
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket.  相似文献   

3.
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a–al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.  相似文献   

4.
A series of novel (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives had been synthesized and evaluated their biological activities as potential tubulin polymerization inhibitors. Among these compounds, compound 3q exhibited potent antiproliferative activities against three cancer cell lines in vitro, and antitubulin polymerization activity with IC50 of 0.92 μM, which was superior to that of colchicine (IC50 = 1.34 μM). Docking simulation was performed to insert compound 3q into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. These results suggested that compound 3q may be a promising antitubulin agent for the potential treatment of cancer.  相似文献   

5.
We describe the synthesis and biological evaluation of a series of diarylmethyloxime and diarylmethylhydrazone analogues that contain an indole ring and different modifications on the nitrogen of the bridge. Several compounds showed potent tubulin polymerization inhibitory action as well as cytotoxic activity against cancer cell lines. The N-methyl-5-indolyl substituted analogues are more potent than ethyl substituted ones. The most potent inhibitors of tubulin polymerization are the diarylketones and the diaryloximes. The cytotoxicity against several cancer cell lines is lower for the oximes than for the ketones. Other substitutions on the imine nitrogen greatly reduce the tubulin inhibitory and/or cytotoxic potencies.  相似文献   

6.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

7.
A series of novel 4,7-dihydroxycoumarin based acryloylcyanohydrazone derivatives were synthesized and evaluated for antiproliferative activity against four different cancer cell lines (A549, HeLa, SKNSH, and MCF7). Most of the compounds displayed potent cytotoxicity with IC50 values ranging from 3.42 to 31.28 µM against all the tested cancer cell lines. The most active compound, 8h was evaluated for pharmacological mechanistic studies on cell cycle progression and tubulin polymerization inhibition assay. The results revealed that the compound 8h induced the cell cycle arrest at G2/M phase and inhibited tubulin polymerization with IC50 = 6.19 µM. Experimental data of the tubulin polymerization inhibition assay was validated by molecular docking technique and the results exhibited strong hydrogen bonding interactions with amino acids (ASN-101, TYR-224, ASN-228, LYS-254) of tubulin.  相似文献   

8.
A new series of compounds, in which the 2-amino-4-methoxyphenyl ring of phenstatin analogue 5 was replaced with 2- or 3-amino-benzoheterocycles, was synthesized and evaluated for antiproliferative activity and inhibition of colchicine binding. The lack of activity of 3',4'-dimethoxy- and 4'-methoxy-benzoyl derivatives (8 and 9, respectively) indicates that the 3',4',5'-trimethoxybenzoyl moiety is critical for the activity. Two compounds, 7 and 11, displayed potent antiproliferative activity, with IC50 values ranging from 25 to 100 nM against a variety of cancer cell lines. Derivative 11 was more active than CA-4 as an inhibitor of tubulin polymerization. The results demonstrated that the antiproliferative activity was correlated with inhibition of tubulin polymerization.  相似文献   

9.
A series of 2,5-diaryl-3-methylpyrimido[4,5-c]quinolin-1(2H)-ones (7-30), variously substituted at the 2- and 5-phenyl moieties, were synthesized and evaluated for their in vitro cytotoxic activity against a PC3 cancer cell line. Cytotoxicity data revealed that the type of substituent as well as substitution pattern have variable influence on cytotoxic activity. Among the compounds tested, compounds (9), (13), (18), (19), and (23) demonstrated appreciable cytotoxic activity with mean IC(50) values of 2.0, 1.4, 1.6, 2.2, and 1.9microM, respectively. Methyl substitution at the 2-phenyl ring was found to yield the least active compounds. Two of the most potent compounds (13) and (18) were further investigated for inhibition of tubulin polymerization and found to have no activity at the concentrations used in the assay.  相似文献   

10.
Based on our prior antitumor hits, 32 novel N-alkyl-N-substituted phenylpyridin-2-amine derivatives were designed, synthesized and evaluated for cytotoxic activity against A549, KB, KBVIN, and DU145 human tumor cell lines (HTCL). Subsequently, three new leads (6a, 7g, and 8c) with submicromolar GI50 values of 0.19–0.41 μM in the cellular assays were discovered, and these compounds also significantly inhibited tubulin assembly (IC50 1.4–1.7 μM) and competitively inhibited colchicine binding to tubulin with effects similar to those of the clinical candidate CA-4 in the same assays. These promising results indicate that these tertiary diarylamine derivatives represent a novel class of tubulin polymerization inhibitors targeting the colchicine binding site and showing significant anti-proliferative activity.  相似文献   

11.
A new class of combretastatin linked 1,3,4-oxadiazoles were designed, synthesized and screened for their cytotoxic activity against five human cancer cell lines such as HeLa, DU-145, A549, MDA-MB-231 and B16. These compounds showed significant cytotoxicity with IC50 values in the range 0.118–54.32 μM. Conjugate 5m displayed potent antiproliferative activity against DU-145 cell line. Flow cytometric analysis revealed that these compounds arrested the cell cycle in G2/M phase. Moreover, the tubulin polymerization assay and immunofluorescence analysis indicate that 5m exhibits potent inhibitory effect on the tubulin assembly. Further, DNA fragmentation and Hoecst staining assays confirm that 5m induces apoptosis. Molecular docking studies and competitive binding assay indicated that 5m effectively bind at the colchicine binding site of the tubulin.  相似文献   

12.
A series of new podophyllotoxin derivatives containing structural modifications at C-7, C-8, and C-9 were synthesized and evaluated for their cytotoxic activity against three human cancer cell lines. All the synthesized compounds showed significant growth inhibition with GI50 values in micromolar levels while some of the compounds were several times more potent against MCF-7 and HeLa cell lines than MIAPACA cell line. Three compounds (12a, 12d and 12e) emerged as potent compounds with broad spectrum of cytotoxic activity against all the tested cell lines with GI50 values in the range of 0.01–2.1 μM. These compounds induce microtubule depolymerization and arrests cells at the G2/M phase of the cell cycle. Moreover, compounds 12d and 12e disrupted microtubule network and accumulated tubulin in the soluble fraction in a similar manner to their parent podophyllotoxin scaffold. In addition, structure activity relationship studies within the series were also discussed. Molecular docking studies of these compounds into the colchicine-binding site of tubulin, revealed possible mode of inhibition by these compounds.  相似文献   

13.
In this study, five series of (E)-6-(4-substituted phenyl)-4-oxohex-5-enoic acids IIb–f (E), (E)-3-(4-(substituted)-phenyl)acrylic acids IIIa–g (E), 4-(4-(substituted)phenylamino)-4-oxobutanoic acids VIa,b,e, 5-(4-(substituted)phenylamino)-5-oxopentanoic acids VIIa,f and 2-[(4-(substituted)phenyl) carbamoyl]benzoic acids VIIIa,e were designed and synthesized. Selected compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumor cell lines. Compound IIf (E) displayed significant inhibitory activity against NCI Non-Small Cell Lung A549/ATCC Cancer cell line (68% inhibition) and NCI-H460 Cancer cell line (66% inhibition). Moreover, the final compounds were evaluated in vitro for their cytotoxic activity on HepG2 Cancer cell line in which histone deacetylase (HDAC) is overexpressed. Compounds IIc (E), IIf (E), IIIb (E), and IIIg (E) exhibited the highest cytotoxic activity against HepG2 human cancer cell lines with IC50 ranging from 2.27 to 10.71 μM. In addition, selected compounds were tested on histone deacetylase isoforms (HDAC1–11). Molecular docking simulation was also carried out for HDLP enzyme to investigate their HDAC binding affinity. In addition, generation of 3D-pharmacophore model and quantitative structure activity relationship (QSAR) models were combined to explore the structural requirements controlling the observed cytotoxic properties.  相似文献   

14.
A new series of biphenyl methylene indolinones has been designed, synthesized and evaluated for their in vitro antiproliferative activity against various cancer cell lines like DU-145 (prostate cancer cell line), 4T1 (mouse breast cancer cell line), MDA-MB-231 (human breast cancer cell line), BT-549 (human breast cancer cell line), T24 (human urinary bladder carcinoma cell line), and HeLa (cervical cancer cell line). Among the series, compound 10e showed potent in vitro cytotoxic activity against HeLa and DU-145 cancer cell lines with IC50 value of 1.74 ± 0.69 µM and 1.68 ± 1.06 µM respectively. To understand the underlying mechanism of most potent cytotoxic compound 10e, various mechanistic studies were carried out on DU-145 cell lines. Cell cycle analysis results revealed that these conjugates affect both G0/G1 and G2/M phase of the cycle, tubulin binding assay resulted that compound 10e interrupting microtubule network formation by inhibiting tubulin polymerization with IC50 value of 4.96 ± 0.05 μM. Moreover, molecular docking of 10e on colchicine binding site of the tubulin explains the interaction of 10e with tubulin. Clonogenic assay indicated inhibition of colony formation by compound 10e in a dose dependent manner. In addition, morphological changes were clearly observed by AO/EB and DAPI staining studies. Moreover, ROS detection using DCFDA, JC-1, and annexin V-FITC assays demonstrated the significant apoptosis induction by 10e.  相似文献   

15.
A new series of 4-aryl-5-(3,4,5-trimethoxyphenyl)-2-alkylthio-1H-imidazoles were synthesized and their cytotoxic activities in vitro against four different cell lines (HT-29, MCF-7, NIH-3T3, AGS) were evaluated. Compound 6g bearing 3,4,5-trimethoxyphenyl moiety on ring A and 4-methoxy substituent on ring B displayed potent cytotoxic activity against all cell lines. Flow cytometry analysis and microtubule polymerization assay confirmed that cytotoxic activities of this compound were related to inhibitory effect against microtubules polymerization. Molecular modeling studies revealed that compound 6g could strongly bind to the colchicine binding site of α,β-tubulin through hydrogen bond interactions with Thrα179 and Cysβ241.  相似文献   

16.
A series of dihalogenated chalcones and structurally related dienones were synthesized and evaluated for their antiproliferative activity in 10 different cancer cell lines and for their effect on microtubule assembly. All compounds showed cytotoxic activity, with IC(50) values in the 5-280 μM range depending on the chalcone structure and the cell line. Five of the compounds were found to be tubulin polymerization inhibitors. In contrast, one of the compounds was found to stabilize tubulin to the same extent as the anticancer drug docetaxel. Molecular modeling suggested that the tubulin inhibitors bind to the colchicine binding site of β-tubulin while the novel tubulin stabilization agent seems to interact with the paclitaxel binding site.  相似文献   

17.
A new series of pyrano chalcone derivatives containing indole moiety (342, 49a49r) were synthesized and evaluated for their antiproliferative activities. Among all the compounds, compound 49b with a propionyloxy group at the 4-position of the left phenyl ring and N-methyl-5-indoly on the right ring displayed the most potent cytotoxic activity against all tested cancer cell lines including multidrug resistant phenotype, which inhibits cancer cell growth with IC50 values ranging from 0.22 to 1.80 μM. Furthermore, 49b significantly induced cell cycle arrest in G2/M phase and inhibited the polymerization of tubulin. Molecular docking analysis demonstrated the interaction of 49b at the colchicine binding site of tubulin. In experiments in vivo, 49b exerted potent anticancer activity in HepG2 human liver carcinoma in BALB/c nude mice. These results indicated these compounds are promising inhibitors of tubulin polymerization for the potential treatment of cancer.  相似文献   

18.
Previously synthesized 2-(benzo[b]thiophene-3′-yl)-6,8,8-triethyldesmosdumotin B (1, TEDB-TB) and 2-(naphth-1′-yl)-6,8,8-triethyldesmosdumotin B (2) showed potent activity against multiple human tumor cell lines, including a multidrug-resistant (MDR) subline, by targeting spindle formation and/or the microtubule network. Consequently, ester analogues of hydroxylated naphthyl substituted TEBDs (35) were prepared and evaluated for their effects on tumor cell proliferation and on tubulin assembly. Among all new compounds, compound 6, a 4′-acetoxynaphthalen-1′-yl derivative, displayed the most potent antiproliferative activity (IC50 0.2–5.7 μM). Selected analogues were confirmed to be tubulin assembly inhibitors in cell-free and cell-based assays using MDR tumor cells. The new analogues partially inhibited colchicine binding to tubulin, suggesting their binding mode would be different from that of colchicine. This observation was supported by computational docking model analyses. Thus, the newly synthesized triethylated chromones with esterified naphthalene groups have good potential for development as a new class of mitotic inhibitors that target tubulin.  相似文献   

19.
Pyrazolo[1,5-a]-1,3,5-triazine myoseverin derivatives 1a–c were prepared from 4-(N-methyl-N-phenylamino)-2-methylsulfanylpyrazolo[1,5-a]-1,3,5-triazine 2. Their cytotoxic activity, inhibition of tubulin polymerization, and cell cycle effects were evaluated. Compounds 1a and 1c are potent tubulin inhibitors and displayed specific antiproliferative activity in colorectal cancer cell lines at micromolar concentrations.  相似文献   

20.
A series of new pyrrol-2(3H)-ones 4a-f and pyridazin-3(2H)-ones 7a-f were synthesized and characterized using different spectroscopic tools. Some of the tested compounds revealed moderate activity against 60 cell lines. The E form of the pyrrolones 4 showed good cytotoxic activity than both the Z form and the corresponding open amide form. Furthermore, the in vitro cytotoxic activity against HepG2 and MCF-7 cell lines revealed that compounds (E)4b, 6f and 7f showed good cytotoxic activity against HepG2 with IC50 values of 11.47, 7.11 and 14.80 μM, respectively. Compounds (E)4b, 6f, 7d and 7f showed a pronounced inhibitory effect against cellular localization of tubulin. Flow cytometric analysis indicated that HepG2 cells treated with (E)4b showed a predominated growth arrest at the S-phase compared to that of G2/M-phase. Molecular modeling study using MOE® program indicated that most of the target compounds showed good binding of β-subunit of tubulin with the binding free energy (dG) values about −10 kcal/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号