首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anti-growth effect of a palladium(II) complex—[PdCl(terpy)](sac)·2H2O] (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine)—was tested against human breast cancer cell lines, MCF-7 and MDA-MB-231. Anti-growth effect was assayed by the MTT and ATP viability assays in vitro and then confirmed on Balb/c mice in vivo. The mode of cell death was determined by both histological and biochemical methods. The Pd(II) complex had anti-growth effect on a dose dependent manner in vitro and in vivo. The cells died by apoptosis as evidenced by the pyknotic nucleus, cleavage of poly-(ADP-ribose) polymerase (PARP) and induction of active caspase-3. These results suggest that the palladium(II) saccharinate complex of terpyridine represents a potentially active novel complex for the breast cancer treatment, thus warrants further studies.  相似文献   

2.
Neo-tanshinlactone (NTL) a natural product is known for its specificity and selectivity towards the breast cancer cells. By NTL D-ring modification approach, 13 new analogues were synthesized (1A1M). Among them 1J showed the best anticancer activity in MCF-7 (ER+, PR+/?, HER2?), SKBR3 (ER?, PR?, HER2+) and MDA-MB-231 (ER?, PR?, HER2?) cells lines with IC50 value 11.98 nM, 23.71 nM, and 62.91 nM respectively. 1J showed minor grove binding interaction with DNA at AT-rich region and induced DNA double strand breaks (DDSBs). This had triggered several key molecular events involving, activation of ATM, Chk2 and p53, reduction in mitochondrial potential (Δψm) leading to caspase-3 and PARP cleavage mediated apoptosis. These results along with other biochemical studies strongly suggest that novel NTL analogue 1J caused DNA cleavage mediated apoptosis in the breast cancer cells and this may serve as potential lead for future breast cancer treatment.  相似文献   

3.
C.M. Brosseau  G. Pirianov  K.W. Colston 《Steroids》2010,75(13-14):1082-1088
It has been previously demonstrated that 1,25 dihydroxyvitamin D3 (1,25-D3) exerts inhibitory effects in breast cancer cells. The aim of this study was to determine whether mitogen-activated protein kinase (MAPK) pathways are associated with 1,25-D3-induced cell death in breast cancer. We used three breast cell lines which have different sensitivities to 1,25-D3 treatment. Non-malignant MCF-12A cells were more sensitive to 1,25-D3 treatment than malignant MCF-7 cells (growth inhibition IC50 75 nM vs. 100 nM, p < 0.001) while malignant MDA-MB-231 cells were resistant. Moreover, 1,25-D3-induced apoptosis was caspase-dependent in MCF-12A cells and caspase-independent in MCF-7 cells. Following MAPK activation analysis, we found a significant activation of JNK in MCF-12A cells and malignant MCF-7 cells in response to 1,25-D3 treatment. Furthermore, 1,25-D3 treatment stimulated p38 activity in MCF-12A cells and in MCF-7 cells. ERK1/2 activity was unaffected by 1,25-D3 treatment in all breast cells. Importantly, no increased MAPK activity was observed in MDA-MB-231 breast cancer cells which displayed resistance to 1,25-D3-induced apoptosis. Utilising specific pharmacological inhibitors of JNK and p38, it was demonstrated that MCF-12A and MCF-7 cells were protected from death induced by 1,25-D3. These results implicate JNK and p38 signalling in 1,25-D3-induced cancer breast cell death.  相似文献   

4.
Because of poor prognosis, clinical treatment of triple-negative (TN) breast cancer remains the most challenging factor in cancer treatment. Extensive research into alternative cancer therapies includes studying the naturopathic effects of the medicinal herb ginseng. This study investigates the anti-neoplastic properties of ginseng sapogenins and the derivatives: (1) (20(S)-protopanaxadiol (PPD), (2) 20(S)-protopanaxatriol), (3) (20(S)-dihydroprotopanaxadiol, and (4) 20(S)-dihydroprotopanaxatriol). These compounds were found to prevent the proliferation of MDA-MB-231 human breast cancer cells. PPD was the most potent inhibitor, exhibiting an IC50 (5.87 μM) comparable to that of the chemotherapeutic drug taxol. Furthermore, PPD induced dose-dependent cleavage of caspase-8, caspase-3, and PARP in MDA-MB-231 cells. Thus, we propose that PPD acts as anti-cancer agent by stimulating caspase-dependent apoptosis in breast cancer cells.  相似文献   

5.
Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.  相似文献   

6.
Cajanol (5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxychroman-4-one) is an isoflavanone from Pigeonpea [Cajanus cajan (L.) Millsp.] roots. As the most effective phytoalexin in pigeonpea, the cytotoxic activity of cajanol towards cancer cells has not been report as yet. In the present study, the anticancer activity of cajanol towards MCF-7 human breast cancer cells was investigated. In order to explore the underlying mechanism of cell growth inhibition of cajanol, cell cycle distribution, DNA fragmentation assay and morphological assessment of nuclear change, ROS generation, mitochondrial membrane potential (ΔΨm) disruption, and expression of caspase-3 and caspase-9, Bax, Bcl-2, PARP and cytochrome c were measured in MCF-7 cells. Cajanol inhibited the growth of MCF-7 cells in a time and dose-dependent manner. The IC50 value was 54.05 μM after 72 h treatment, 58.32 μM after 48 h; and 83.42 μM after 24 h. Cajanol arrested the cell cycle in the G2/M phase and induced apoptosis via a ROS-mediated mitochondria-dependent pathway. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade, and active-caspase-3 was involved in PARP cleavage. All of these signal transduction pathways are involved in initiating apoptosis. To the best of our knowledge, this is the first report demonstrating the cytotoxic activity of cajanol towards cancer cells in vitro.  相似文献   

7.
Acanthopanax sessiliflorus, a small woody shrub has traditionally been referred to have anticancer activity, but it has not been scientifically explored so far. Therefore, to investigate the anticancer effects of A. sessiliflorus stem bark extracts (ASSBE), MDA-MB-231 and MCF-7 human breast cancer cells were treated with one of its bioactive fractions, n-hexane (ASSBE-nHF). Cytotoxicity (24 h) was determined by MTT assay and antiproliferative effect was assessed by counting cell numbers after 72 h treatment using hemocytometer. The role of ASSBE-nHF on apoptosis was analysed by annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation pattern and immunoblotting of apoptosis markers. For the assay of enhanced production of ROS and mitochondrial membrane depolarization, specific stains such as DCFH-DA and JC-1 were used, respectively. To understand the mode of action of ASSBE-nHF on MCF-7 cells, cells were pre-treated with antioxidant, n-acetylcysteine. The hexane fraction of ASSBE showed maximum activity towards human breast cancer cells compared to other two fractions at a minimal concentration of 50 μg/ml. The annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation and immunoblotting assays showed that ASSBE-nHF induces non-apoptotic cell death in MCF-7 and MDA-MB-231 cells. ASSBE-nHF significantly increased the production of ROS and decreased the mitochondrial membrane potential (MMP) in MCF-7 cells. Similarly, it decreased the MMP in MDA-MB-231 cells, but had no effect on ROS production. Further, the cytotoxic effect of ASSBE-nHF in MCF-7 cells was not significantly reversed even in the presence of n-acetylcysteine, an antioxidant. These findings revealed that ASSBE-nHF induces non-apoptotic cell death via mitochondria associated with both ROS dependent and independent pathways in human breast cancer cells.  相似文献   

8.
The synthesis of two new highly potent 17beta-estradiol-linked platinum(II) complexes is described. The new molecules are linked at position 16 of the steroid nucleus with an alkyl chain. They are made from estrone in nine chemical steps with an overall yield exceeding 10%. The biological activity of these compounds was evaluated in vitro on estrogen dependent and independent (ER(+) and ER(-)) human breast tumor cell lines: MCF-7 and MDA-MB-231. The novel compounds prove to be highly cytotoxic against breast cancer cell lines. The most cytotoxic derivative shows high affinity for the estrogen receptor alpha.  相似文献   

9.
A series of cyclometallated platinum(IV) compounds (3a, 3a′ and 3b′) with a meridional [C,N,N′] terdentate ligand, featuring an halido and an aryl group in the axial positions has been evaluated for electrochemical reduction and preliminary biological behavior against a panel of human adenocarcinoma (A-549 lung, HCT-116 colon, and MCF-7 breast) cell lines and the normal bronquial epithelial BEAS-2B cells. Cathodic reduction potentials (shifting from −1.463 to −1.570 V) reveal that the platinum(IV) compounds under study would be highly reluctant to be reduced in a biological environment. Actually ascorbic acid was not able to reduce complex 3a′, the most prone to be reduced according its reduction potential, over a period of one week. These results suggest an intrinsic activity for the investigated platinum(IV) complexes (3a, 3a′ and 3b′), which exhibit a remarkable cytotoxicity effectiveness (with IC50 values in the low micromolar range), even greater than that of cisplatin. The IC50 for A-549 lung cells and clog P values were found to follow the same trend: 3b′ > 3a′ > 3a. However, no correlation was observed between reduction potential and in vitro activity. As a representative example, cyclometallated platinum(IV) compound 3a′, exercise its antiproliferative activity directly over non-microcytic A-549 lung cancer cells through a mixture of cell cycle arrest (13% arrest at G1 phase and 46% arrest at G2 phase) and apoptosis induction (increase of early apoptosis by 30 times with regard to control). To gain further insights into the mode of action of the investigated platinum(IV) complexes, drug uptake, cathepsin B inhibition and ROS generation were also evaluated. Interestingly an increased ROS generation could be related with the antiproliferative activity of the cyclometallated platinum(IV) series under study in the cisplatin-resistant A-549 lung and HCT-116 cancer cell lines.  相似文献   

10.
Coumarins are naturally-occurring compounds that have attracted considerable interest due to their numerous biological activities depending on their pattern of substitution on the coumarin molecule. In this present investigation, we synthesized 3-(4-nitrophenyl)coumarin derivatives (9a–e) and evaluated their in vitro cytotoxic effect on human lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cell lines for 48 h using crystal violet dye binding assay. Cytotoxic effects of the most active compound on normal human lung (MRC-9) and breast (MCF-10A) cell lines, cell cycle analysis using flow cytometry and mitochondrial membrane potential (MMP) using Tetramethyl Rhodamine Methyl Ester (TMRM; rhodamine-123) fluorescent dye were also examined. Among the compounds that were evaluated, 9c showed cytotoxic effect (active), caused significant cells arrest (p < 0.05) in G0/G1 and S phases of cell cycle and loss of MMP in A459, MDA-MB-231 and PC3 cell lines. Additionally, the cytotoxic effect of 9c was compared to reference drugs (Coumarin and Docetaxel) for comparative study. These results further demonstrate that acetoxy group at C-7 and C-8 positions of 9c are responsible for the observed cytotoxic effect in these cancer cell lines.  相似文献   

11.
PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.  相似文献   

12.
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner.  相似文献   

13.
New chromeno-annulated cis-fused pyrano[3,4-c]benzopyran and naphtho pyran derivatives have been synthesized by domino aldol-type reaction/hetero Diels–Alder reaction generated from o-quinone methide in situ from 7-O-prenyl derivatives of 8-formyl-2,3-disubstituted chromenones with resorcinols/naphthols in the presence of 20 mol % ethylenediamine diacetate (EDDA), triethylamine (2 mL) as co-catalyst in CH3CN under reflux conditions in good yields. The structures were established based on spectroscopic data, and further confirmed by X-ray diffraction analysis. The results showed that compounds 4h and 4j exhibited very potent cytotoxicity against human cervical cancer cell line (HeLa). Compound 4h displayed good inhibitory activity against both breast cancer cell lines, MDA-MB-231 and MCF-7. Further, the compound 4i exhibited good cytotoxicity against only MDA-MB-231, and compound 4j showed promising activity against human lung cancer cell line, A549 with IC50 value of 2.53 ± 0.07 μM, which was comparable to the standard doxorubicin (IC50 = 1.21 ± 0.1 μM).  相似文献   

14.
A series of new benzoxazepine derivatives substituted with different alkoxy and aryloxy group were synthesized comprising synthetic steps of Mitsunobu reaction, lithium aluminum hydride (LAH) reduction, followed by debenzylation and finally intramolecular Mitsunobu cyclization. The new benzoxazepines specifically inhibited growth of breast cancer cell lines, MCF-7 and MDA-MB-231, but lack cytotoxicity to normal HEK-293 cells. The cell growth inhibition induced by the active compounds was due to cell cycle arrest at G0/G1 phase. The active compound could cause significant reduction in tumor volume of MCF-7 xenograft tumor in nude mice model and their activity was comparable to that of tamoxifen citrate at 16 mg kg?1 dose at 30 days of treatment. The identified most active compounds of the series have specific advantages as anti-cancer agent in breast cancer than tamoxifen.  相似文献   

15.
Four palladium(II) and platinum(II) saccharinate (sac) complexes with 2-(hydroxymethyl)pyridine (2-hmpy) and 2-(2-hydroxyethyl)pyridine (2-hepy), namely trans-[Pd(2-hmpy)2(sac)2]·H2O (1), trans-[Pt(2-hmpy)2(sac)2]·3H2O (2), trans-[Pd(2-hepy)2(sac)2] (3) and trans-[Pt(2-hepy)2(sac)2] (4), have been synthesized and characterized by elemental analysis, UV–vis, IR and NMR. Single crystal X-ray analysis reveals that the metal(II) ions in each complex are coordinated by two sac and two 2-hmpy or 2-hepy ligands with a trans arrangement. Anticancer effects of 14 were tested against four different cancer cell lines (A549 and PC3 for lung cancer, C6 for glioblastoma, and Hep3B for liver cancer). Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The mode of cell death was determined by both histological and biochemical methods. Among the metal complexes, complex 2 resulted in relatively stronger anti-growth effect in a dose-dependent manner (3.13–200 μM), compared to the others, by inducing apoptosis.  相似文献   

16.
Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor(ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells.  相似文献   

17.
Voltage-gated Na+ channels (VGSCs), predominantly the ‘neonatal’ splice form of Nav1.5 (nNav1.5), are upregulated in metastatic breast cancer (BCa) and potentiate metastatic cell behaviours. VGSCs comprise one pore-forming α subunit and one or more β subunits. The latter modulate VGSC expression and gating, and can function as cell adhesion molecules of the immunoglobulin superfamily. The aims of this study were (1) to determine which β subunits were expressed in weakly metastatic MCF-7 and strongly metastatic MDA-MB-231 human BCa cells, and (2) to investigate the possible role of β subunits in adhesion and migration. In both cell lines, the β subunit mRNA expression profile was SCN1B (encoding β1) ? SCN4B (encoding β4) > SCN2B (encoding β2); SCN3B (encoding β3) was not detected. MCF-7 cells had much higher levels of all β subunit mRNAs than MDA-MB-231 cells, and β1 mRNA was the most abundant. Similarly, β1 protein was strongly expressed in MCF-7 and barely detectable in MDA-MB-231 cells. In MCF-7 cells transfected with siRNA targeting β1, adhesion was reduced by 35%, while migration was increased by 121%. The increase in migration was reversed by tetrodotoxin (TTX). In addition, levels of nNav1.5 mRNA and protein were increased following β1 down-regulation. Stable expression of β1 in MDA-MB-231 cells increased functional VGSC activity, process length and adhesion, and reduced lateral motility and proliferation. We conclude that β1 is a novel cell adhesion molecule in BCa cells and can control VGSC (nNav1.5) expression and, concomitantly, cellular migration.  相似文献   

18.
A series of (2E,2′E)-1,1′-(3-hydroxy-5-methylbiphenyl-2,6-diyl)-bis(3-pheylprop-2-ene-1-ones (533) were prepared by the reaction of 1,3-diacetyl biphenyls (14) with different aldehydes in presence of catalytic amount of solid KOH in ethanol in excellent yields. The compounds were evaluated for anticancer activity against human breast cancer MCF-7 (estrogen responsive proliferative breast cancer model) and MDA-MB-231 (estrogen independent aggressive breast cancer model) cell lines, HeLa (cervical cancer) cell line, and human embryonic kidney (HEK-293) cells. Most of the compounds preferentially inhibited the growth of the aggressive human breast cancer cell lines, MDA-MB-231 in the range of 4.4–30 μM. The two compounds 9 and 29 proved to be better anticancer agents than the standard drug tamoxifen against the MDA-MB-231 cell lines. Mode of action of these compounds was established to be apoptosis, cell cycle arrest and loss of mitochondrial membrane potential.  相似文献   

19.
The aim of this study was to determine the influence of cisplatin and novel dinuclear platinum(II) complexes on the electrical properties of the membrane and the level of lipid peroxidation in the human breast cancer cell lines MDA-MB-231 and MCF-7. The basal electrical surface properties of cells are known. Changes in cell function may affect these surface properties, and those changes can be detected by electrokinetic measurements. The surface charge density of the breast cancer cell lines MDA-MB-231 and MCF-7 were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the solution ions and the breast cancer cell surface. The experimental and the theoretical charge variation curves of the breast cancer cells at pH 2.5–9 were in agreement. Measurements of the cellular malondialdehyde levels with high performance liquid chromatography were used to determine the extent of lipid peroxidation. The acid and base functional group concentrations and average association constants with hydroxyl ions were smaller in breast cancer cell membranes treated with cisplatin or novel dinuclear platinum(II) complexes compared with untreated cancer cells, and the average association constants with hydrogen ions were higher. The levels of lipid peroxidation products in breast cancer cells treated with cisplatin or novel dinuclear platinum(II) complexes were also higher than in untreated cancer cells.  相似文献   

20.
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256 μM and periods of treatment of 24, 48 and 72 h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64–70 μM) for the MDA-MB-231 cell line after 24–48 h of treatment, but they were more selective and much more potent (IC50 4–16 μM) for the MCF-7 cells after 48 h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72 h of treatment (IC50 1–2 μM), probably as the result of slow hydrolysis of their methyl ester functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号