首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
VEGFR-3 is essential for vascular development and maintenance of lymphatic vessel's integrity. Little is known about its cooperative effect with other receptors of the same family. Contrary to VEGFR-2, stimulation of VEGFR-3 by VEGF-C and -D failed to enhance its phosphorylation either in HEK293T or in PAE cells. These ligands were unable to induce angiogenesis of PAEC expressing VEGFR-3 alone. In the presence of VEGFR-2, VEGF-C and -D induced heterodimerization of VEGFR-3 with VEGFR-2. This heterodimerization was associated with enhanced VEGFR-3 phosphorylation and subsequent cellular responses as evidenced by the formation of capillary-like structures in PAE cells and proliferation of primary human endothelial cells expressing both receptors. Taken together, these results show for the first time that VEGFR-3 needs to be associated to VEGFR-2 to induce ligand-dependent cellular responses.  相似文献   

2.
A small molecule library of pyrido[2,3-d]pyrimidine-2,4-dione derivatives 616 was synthesized from 6-amino-1,3-disubstituted uracils 18, characterized, and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K). To understand the binding pocket of eEF-2K, structural modifications of the pyrido[2,3-d]pyrimidine were made at three regions (R1, R2, and R3). A homology model of eEF-2K was created, and compound 6 (A-484954, Abbott laboratories) was docked in the catalytic domain of eEF-2K. Compounds 6 (IC50 = 420 nM) and 9 (IC50 = 930 nM) are found to be better molecules in this preliminary series of pyrido[2,3-d]pyrimidine analogs. eEF-2K activity in MDA-MB-231 breast cancer cells is significantly reduced by compound 6, to a lesser extent by compound 9, and is unaffected by compound 12. Similar inhibitory results are observed when eEF-2K activity is stimulated by 2-deoxy-d-glucose (2-DOG) treatment, suggesting that compounds 6 and 9 are able to inhibit AMPK-mediated activation of eEF-2K to a notable extent. The results of this work will shed light on the further design and optimization of novel pyrido[2,3-d]pyrimidine analogs as eEF-2K inhibitors.  相似文献   

3.
New benzothieno[3,2-d]-1,2,3-triazines, together with precursors triazenylbenzo[b]thiophenes, were designed, synthesized and screened as anticancer agents. The structural features of these compounds prompted us to investigate their DNA binding capability through UV–vis absorption titrations, circular dichroism, and viscometry, pointing out the occurrence of groove-binding. The derivative 3-(4-methoxy-phenyl)benzothieno[3,2-d]-1,2,3-triazin-4(3H)-one showed the highest antiproliferative effect against HeLa cells and was also tested in cell cycle perturbation experiments. The obtained results assessed for the first time the anticancer activity of benzothieno[3,2-d]-1,2,3-triazine nucleus, and we related it to its DNA-binding properties.  相似文献   

4.
Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii (pj) can lead to serious health consequences in patients with an immunocompromised system. Trimethoprim (TMP), used as first-line therapy in combination with sulfamethoxazole, is a selective but only moderately potent pj dihydrofolate reductase (pjDHFR) inhibitor, whereas non-clinical pjDHFR inhibitors, such as, piritrexim and trimetrexate are potent but non-selective pjDHFR inhibitors. To meet the clinical needs for a potent and selective pjDHFR inhibitor for PCP treatment, fourteen 6-substituted pyrido[3,2-d]pyrimidines were developed. Comparison of the amino acid residues in the active site of pjDHFR and human DHFR (hDHFR) revealed prominent amino acid differences which could be exploited to structurally design potent and selective pjDHFR inhibitors. Molecular modeling followed by enzyme assays of the compounds revealed 15 as the best compound of the series with an IC50 of 80 nM and 28-fold selectivity for inhibiting pjDHFR over hDHFR. Compound 15 serves as the lead analog for further structural variations to afford more potent and selective pjDHFR inhibitors.  相似文献   

5.
4-Morpholin-4-ylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine 2a was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 1.4 microM. By structural modification of 2a, the 2-aryl-4-morpholinopyrido[3',2':4,5]furo[3,2-d]pyrimidine derivative 10e was discovered as a p110alpha inhibitor with approximately 400-fold greater potency than 2a. Evaluation of isoform selectivity showed that 10e is a potent inhibitor of p110beta. Furthermore, 10e showed anti-proliferative activity in various cell lines, including multi-drug resistant MCF7/ADR-res cells, and was effective against HeLa human cervical tumor xenografts in nude mice.  相似文献   

6.
A series of eight N4-phenylsubstituted-6-(2,4-dichlorophenylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines 815 were synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors with varied substitutions in the phenyl ring of the 4-anilino moiety. In addition, five N4-phenylsubstituted-6-phenylmethylsubstituted-7H-pyrrolo[2,3-d]pyrimidin-4-amines 1620 were synthesized to evaluate the importance of the 2-NH2 moiety for multiple receptor tyrosine kinase (RTK) inhibition. Cyclocondensation of α-halomethylbenzylketones with 2,6-diamino-4-hydroxypyrimidine afforded 2-amino-6-(2,4-dichlorophenylmethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one, 23 and reaction of α-bromomethylbenzylketones with ethylamidinoacetate followed by cyclocondensation with formamide afforded the 6-phenylmethylsubstituted-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones, 4042, respectively. Chlorination of the 4-position and displacement with appropriate anilines afforded the target compounds 820. Compounds 8, 10 and 14 were potent VEGFR-2 inhibitors and were 100-fold, 40-fold and 8-fold more potent than the standard semaxanib, respectively. Previously synthesized multiple RTK inhibitor, 5 and the VEGFR-2 inhibitor 8 from this study, were chosen for further evaluation in a mouse orthotopic model of melanoma and showed significant inhibition of tumor growth, angiogenesis and metastasis.  相似文献   

7.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.  相似文献   

8.
A series of 2-pyridinyl-[1,2,3]triazoles have been synthesized and evaluated for their ALK5 inhibitory activity in the luciferase reporter assays. Compound 8d showed significant ALK5 inhibition (SBE-luciferase activity, 25%; p3TP-luciferase activity, 17%) at a concentration of 5 microM that is comparable to that of SB-431542 (SBE-luciferase activity, 21%; p3TP-luciferase activity, 12%), but weak p38 alpha MAP kinase inhibition (13%) at a concentration of 10 microM that is much lower than that of SB-431542 (54%).  相似文献   

9.
We report here the synthesis and SAR of a new series of thieno[3,2-d]pyrimidines as potent Tpl2 kinase inhibitors. The proposed binding mode suggests the potential flipped binding mode depending on the substitution. Biacore studies show evidence of binding of these molecules to the protein kinase. The kinome inhibition profile of these molecules suggests good selectivity.  相似文献   

10.
Herein, we embarked on a structural optimization campaign aiming at the discovery of novel anticancer agents with our previously reported XL-6f as a lead compound. A library of 23 compounds has been synthesized based on the highly conserved active site of VEGFR-2. Several title compounds exhibited selective inhibitory activities against VEGFR-2, which also displayed selective anti-proliferation potency against HepG2 cell. All synthesized compounds were evaluated for anti-angiogenesis capability. Compound 7o showed the most potent anti-angiogenesis ability, the efficient cytotoxic activities (in vitro against HUVEC and HepG2 cell lines with IC50 values of 0.58 and 0.23 µM, respectively). The molecular docking analysis revealed 7o is a Type-II inhibitor of VEGFR-2 kinase. In general, these results indicated these arylamide-5-anilinoquinazoline-8-nitro derivatives are promising inhibitors of VEGFR-2 for the potential treatment of anti-angiogenesis.  相似文献   

11.
To reduce the pro-angiogenic effects of sEH inhibition, a structure–activity relationship (SAR) study was performed by incorporating structural features of the anti-angiogenic multi-kinase inhibitor sorafenib into soluble epoxide hydrolase (sEH) inhibitors. The structural modifications of this series of molecules enabled the altering of selectivity towards the pro-angiogenic kinases C-RAF and vascular endothelial growth factor receptor-2 (VEGFR-2), while retaining their sEH inhibition. As a result, sEH inhibitors with greater potency against C-RAF and VEGFR-2 were obtained. Compound 4 (t-CUPM) possesses inhibition potency higher than sorafenib towards sEH but similar against C-RAF and VEGFR-2. Compound 7 (t-CUCB) selectively inhibits sEH, while inhibiting HUVEC cell proliferation, a potential anti-angiogenic property, without liver cancer cell cytotoxicity. The data presented suggest a potential rational approach to control the angiogenic responses stemming from sEH inhibition.  相似文献   

12.
Inhibition of receptor tyrosine kinase (RTK) signaling pathways is an important area for the development of novel anticancer agents. Numerous multikinase inhibitors (MKIs) have been recently approved for the treatment of cancer. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the principal mediator of tumor angiogenesis. In an effort to develop ATP-competitive VEGFR-2 selective inhibitors the 5-chloro-N4-substituted phenyl-9H-pyrimido[4,5-b]indole-2,4-diamine scaffold was designed. The synthesis of the target compounds involved N-(4,5-dichloro-9H-pyrimido[4,5-b]indol-2-yl)-2,2-dimethylpropanamide) as a common intermediate. A nucleophilic displacement of the 4-chloro group of the common intermediate by appropriately substituted anilines afforded the target compounds. Biological evaluation indicated that compound 5 is a potent and selective VEGFR-2 inhibitor comparable to sunitinib and semaxinib.  相似文献   

13.
14.
The mechanisms controlling blood vessel formation during early embryonal development have only partly been elucidated. Shb is an adaptor protein previously implicated in the angiogenic response to vascular endothelial growth factor (VEGF). To elucidate a possible role of Shb in embryonic vascular development, wild-type and SH2 domain mutated (R522K) Shb were overexpressed in murine embryonic stem (ES) cells. Embryoid bodies (EBs) differentiating from Shb-overexpressing ES cells in vitro were stained for CD31 or VEGFR-2 to visualize the formation of vascular structures. We found that Shb promotes the outgrowth of blood vessels in EBs both in the absence and presence of growth factors. This response may be the consequence of an increased number of VEGFR-2 positive cells at an early stage of EB development, a finding corroborated by both immunostaining and real-time RT-PCR. In addition, Shb overexpression upregulated the expression of PDGFR-beta, CD31, CD41 and Tal1. Cells co-expressing VEGFR-2 and PDGFR-beta were commonly observed when Shb was overexpressed and inhibition of PDGF-BB signaling reduced the amount of VEGFR-2 mRNA under these conditions. EBs expressing the Shb R522K-mutant did not form vascular structures. Microarray analysis of VEGFR-2/CD31 positive cells after 6 days of differentiation revealed numerous changes of expression of genes relating to an endothelial/hematopoietic phenotype in response to Shb overexpression. The findings suggest that Shb may play a crucial role during early ES cell differentiation to vascular structures by transducing VEGFR-2 and PDGFR-beta signals.  相似文献   

15.
We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF165-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF165 promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF165. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF165 in megakaryocytic cells.  相似文献   

16.
A novel series of 6-alkenylamides of 4-anilinothieno[2,3-d]pyrimidine derivatives was designed, synthesized and evaluated as irreversible inhibitors of the epidermal growth factor receptor (EGFR). Most of the compounds exhibited good potency against EGFR wild type (EGFR wt) and EGFR T790M/L858R. Among these, the half-maximal inhibitory concentration (IC50) values of 17 compounds against EGFR wt were less than 0.020 μM, and those of 12 compounds were less than 0.010 μM. The IC50 values of 10 compounds against EGFR T790M/L858R were less than 0.005 μM. Compounds 8l, 9n, 9o, 9q and 9v almost completely blocked the phosphorylation of EGFR in the A431 cell line at 1 μM. Compounds 8l, 9n, 9o, 9q and 9v blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (1 μM), and compound 8l was confirmed to be an irreversible inhibitor through the dilution method.  相似文献   

17.
A series of thieno[3,2-d]pyrimidines bearing a hydroxamic acid moiety as novel HDAC inhibitors were designed and synthesized. The structures of the new synthesized compounds were confirmed using IR, 1H, 13C NMR spectrum. Compounds 1113 showed potent inhibitory activities against HDACs with IC50 values at 0.38, 0.49 and 0.61 μM. Most of target compounds displayed strong anti-proliferative activity by a MTT assay on three human cancer cell lines including HCT-116, MCF-7 and HeLa. Compound 11, having potent inhibitory activities against HDACs, induced apoptosis and G2/M cell cycle arrest in HCT-116 cell line.  相似文献   

18.
Protease-activated receptor 2 (PAR2) is a G-protein coupled receptor that is cleaved and activated by serine proteases including the coagulation protease factor VIIa (FVIIa). There is evidence that PAR2 function contributes to angiogenesis, but the mechanisms involved are poorly defined. Here we show that PAR2 activation in human breast cancer cells leads to the upregulation of vascular endothelial growth factor (VEGF). Activation of PAR2 with agonist peptide (AP), trypsin or FVIIa results in a robust increase of VEGF message and protein. Incubation of cells with PAR1-AP, PAR3-AP, PAR4-AP, or thrombin has only a modest effect on VEGF production. Cleavage blocking antibodies show that FVIIa-mediated VEGF production is PAR2 mediated. Mitogen-activated protein kinase (MAPK) pathway inhibitors U0126 and SB203580 inhibit PAR2-mediated VEGF production. Incubation of cells with PAR2-AP leads to significant extracellular regulated kinase1/2 (ERK1/2) and p38 MAPK phosphorylation and activation. Collectively, these data suggest that PAR2 signaling through MAPK pathways leads to the production of proangiogenic VEGF in breast cancer cells.  相似文献   

19.
A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.  相似文献   

20.
Six 2,4-diaminopyrido[2,3-d]pyrimidines with a 6-methylthio bridge to an aryl group were synthesized and biologically evaluated as inhibitors of Pneumocystis carinii (pc) and Toxoplasma gondii (tg) dihydrofolate reductase (DHFR). The syntheses of analogues 3-8 were achieved by nucleophilic displacement of 2,4-diamino-6-bromomethylpyrido[2,3-d]pyrimidine 14 with various arylthiols. The alpha-naphthyl analogue 4 showed the highest selectivity ratios of 3.6 and 8.7 against pcDHFR and tgDHFR, respectively, versus rat liver (rl) DHFR. The beta-naphthyl analogue 5 exhibited the highest potency within the series with an IC(50) value against pcDHFR and tgDHFR of 0.17 and 0.09 microM, respectively. Analogue 4 was evaluated for in vitro antimycobacterium activity and was shown to inhibit the growth of Mycobacterium tuberculosis H(37)Rv cells by 58% at a concentration of 6.25 microg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号