首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonribosomal peptide synthetases (NRPS) are multifunctional proteins that catalyze the synthesis of the peptide products with enormous biological potential. The process of biosynthesis starts with the adenylation (A) domain, which during the catalytic cycle undergoes extensive structural rearrangements. In this paper, we present the first study of the tyrocidine synthetase 1 A-domain (TycA-A) fluorescence properties. The TycA-A protein contains five potentially fluorescent Trp residues at positions 227, 301, 323, 376 and 406. The contribution of each Trp to the TycA-A emission was determined using protein variants bearing single Trp to Phe substitutions. The accessibility of the Trp side chains during adenylation showed that only W227 is affected by substrate binding. The protein variant containing solely fluorescent W227 residue was constructed and further used as a probe to explore the binding effect of different non-cognate amino acid substrates. The results indicate a different accessibility of W227 residue in the presence of non-cognate amino acids, which might offer an explanation for the higher aminoacyl-adenenylate leakage. Overall, our results suggest that intrinsic tryptophan fluorescence could be used as a method to probe the effect of substrate binding on the local structure in NRPS adenylation domains.  相似文献   

2.
The acetate kinase from the Antarctic psychrophilic Shewanella sp. AS-11 (SAK) has a significantly higher catalytic efficiency at low temperatures when compared with that from mesophilic Escherichia coli K-12 (EAK). To examine the stability and conformational flexibility of SAK and EAK, steady state intrinsic fluorescence studies were performed. EAK contains only one Trp at a position 46, while SAK contains two Trps at positions 46 and 388. From the fluorescence emission spectra, quenching with acrylamide, Cs+ and I at different temperatures and denaturation with guanidine-HCl, it was revealed that the SAK bears more flexible and unstable structure than that of EAK. Substrate-induced conformational changes reflect that SAK reached transition state through more conformational changes than EAK. In combination of our thermodynamic studies on the enzymatic reaction and present research findings, it can be concluded that these structural features of SAK may contribute to its high catalytic efficiency at low temperatures.  相似文献   

3.
Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general.  相似文献   

4.
Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [3H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment.  相似文献   

5.
6.
EmrE, a member of the small multidrug transporters superfamily, extrudes positively charged hydrophobic compounds out of Escherichia coli cytoplasm in exchange for inward movement of protons down their electrochemical gradient. Although its transport mechanism has been thoroughly characterized, the structural basis of energy coupling and the conformational cycle mediating transport have yet to be elucidated. In this study, EmrE structure in liposomes and the substrate-induced conformational changes were investigated by systematic spin labeling and EPR analysis. Spin label mobilities and accessibilities describe a highly dynamic ligand-free (apo) conformation. Dipolar coupling between spin labels across the dimer reveals at least two spin label populations arising from different packing interfaces of the EmrE dimer. One population is consistent with antiparallel arrangement of the monomers, although the EPR parameters suggest deviations from the crystal structure of substrate-bound EmrE. Resolving these discrepancies requires an unusual disposition of TM3 relative to the membrane-water interface and a kink in its backbone that enables bending of its C-terminal part. Binding of the substrate tetraphenylphosphonium changes the environment of spin labels and their proximity in three transmembrane helices. The underlying conformational transition involves repacking of TM1, tilting of TM2, and changes in the backbone configurations of TM3 and the adjacent loop connecting it to TM4. A dynamic apo conformation is necessary for the polyspecificity of EmrE allowing the binding of structurally diverse substrates. The flexibility of TM3 may play a critical role in movement of substrates across the membrane.  相似文献   

7.
The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design.  相似文献   

8.
Highlights? Structure of ABCA4 was determined by electron microscopy to a resolution of 18 Å ? Binding of ATP induced conformational changes in cytoplasmic and transmembrane regions ? Transport mechanism is proposed based on EM and hydrogen/deuterium exchange data  相似文献   

9.
Cells control their volume through the accumulation of compatible solutes. The bacterial ATP-binding cassette transporter OpuA couples compatible solute uptake to ATP hydrolysis. Here, we study the gating mechanism and energy coupling of OpuA reconstituted in lipid nanodiscs. We show that anionic lipids are essential both for the gating and the energy coupling. The tight coupling between substrate binding on extracellular domains and ATP hydrolysis by cytoplasmic nucleotide-binding domains allows the study of transmembrane signaling in nanodiscs. From the tight coupling between processes at opposite sides of the membrane, we infer that the ATPase activity of OpuA in nanodiscs reflects solute translocation. Intriguingly, the substrate-dependent, ionic strength-gated ATPase activity of OpuA in nanodiscs is at least an order of magnitude higher than in lipid vesicles (i.e. with identical membrane lipid composition, ionic strength, and nucleotide and substrate concentrations). Even with the chemical components the same, the lateral pressure (profile) of the nanodiscs will differ from that of the vesicles. We thus propose that membrane tension limits translocation in vesicular systems. Increased macromolecular crowding does not activate OpuA but acts synergistically with ionic strength, presumably by favoring gating interactions of like-charged surfaces via excluded volume effects.  相似文献   

10.
Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H+-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin. According to this model, sialin consists of 12 transmembrane helices (TMs) with an overall architecture similar to that of the distantly related glycerol 3-phosphate transporter GlpT. We show that TM4 in sialin lines a large aqueous cavity that forms a part of the substrate permeation pathway and demonstrate substrate-induced alterations in accessibility of substituted cysteine residues in TM4. In addition, we demonstrate that one mutant, F179C, has a dramatically different effect on the apparent affinity and transport rate for N-acetylneuraminic acid and glucuronic acid, suggesting that it may be directly involved in substrate recognition and/or translocation. These findings offer a basis for further defining the transport mechanism of sialin and other SLC17 family members.  相似文献   

11.
Neurofibromatosis type 2 is an inherited autosomal disorder caused by biallelic inactivation of the NF2 tumor suppressor gene. The NF2 gene encodes a 70-kDa protein, merlin, which is a member of the ezrin-radixin-moesin (ERM) family. ERM proteins are believed to be regulated by a transition between a closed conformation, formed by binding of their N-terminal FERM domain and C-terminal tail domain (CTD), and an open conformation, in which the two domains do not interact. Previous work suggests that the tumor suppressor function of merlin is similarly regulated and that only the closed form is active. Therefore, understanding the mechanisms that control its conformation is crucial. We have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer, both as purified protein and in live cells. Using these tools, we find that merlin exists predominately as a monomer in a stable, closed conformation that is mediated by the central α-helical domain. The contribution from the FERM-CTD interaction to the closed conformation appears to be less important. Upon phosphorylation or interaction with an effector protein, merlin undergoes a subtle conformational change, suggesting a novel mechanism that modulates the interaction between the FERM domain and the CTD.Neurofibromatosis type 2 is an inherited autosomal disorder that is characterized by bilateral schwannomas of the eighth cranial nerve. The tumor suppressor gene responsible for this disorder, NF2, was cloned in 1993 (45). Biallelic inactivation of the NF2 gene is also seen in spontaneous schwannoma, meningioma, and malignant mesothelioma (22). In mouse models, deletion of the Nf2 gene is embryonic lethal, indicating an essential role for NF2 in development (24). Heterozygous mice develop a variety of aggressive metastatic tumors that have lost the wild-type allele (23). Targeted deletion of the Nf2 gene in Schwann cells leads to schwannoma formation (7). In vitro, Nf2-null cells grow to significantly higher densities (31), suggesting that contact inhibition of growth is impaired in these cells and that mediation of growth arrest at high cell density may be the basis for the tumor suppressor function of the NF2 gene. In normal fibroblasts, merlin is inactive as a growth suppressor in subconfluent cells, becoming activated as they approach confluence, thereby effecting contact inhibition of growth (26).The NF2 gene encodes a 70-kDa protein called merlin (for moesin, ezrin, radixin-like protein), which shares significant homology with members of the ezrin-radixin-moesin (ERM) branch of the Band 4.1 superfamily (45). The domain structure of merlin, also shared with other ERM proteins, consists of an N-terminal FERM domain, followed by a central α-helical region (CH) and a C-terminal tail domain (CTD). The merlin FERM domain has relatively high sequence similarity with other ERM family members, a 60 to 70% identity over the first 300 amino acids. The CH domain and the CTD show much lower identity (28 to 36%); however, the α-helical character of the CH domain is preserved, as is the heptad repeat pattern typical of α-helices that form coiled coils (46).The critical point of regulation of all the ERM proteins is a high-affinity intramolecular interaction between the C-terminal domain and the FERM domain (4) (Fig. (Fig.1).1). The FERM domain folds into a three-lobed cloverleaf structure that acts as a multifaceted docking site for protein binding partners (16, 39). The CTD, consisting of four major and two minor helices and a beta sheet, binds to the FERM domain by extending across the face of the F2 and F3 lobes (32). This intramolecular head-to-tail binding results in a “closed” conformation, with the C-terminal domain covering much of the surface of the FERM domain (32, 44). For ezrin, radixin and moesin, the CTD functions as a mask, blocking access of effector molecules, such as the cell surface receptors CD44 and ICAM2 and adaptor molecules, like EBP50/NHERF, to sites on the surface of the FERM domain (11, 25, 44). The interaction between the CTD and FERM domain is regulated by phosphatidyl inositol-(4,5)-bisphosphate (PIP2) binding to the FERM domain and by phosphorylation of a critical residue in the CTD (3, 6, 10, 49). This residue, threonine 567 in ezrin, is conserved throughout the ERM family (21). Phosphorylation introduces a negative charge and a bulky side group that effectively reduces the affinity of the interaction, releasing the CTD from the FERM domain and causing a transition to an open conformation. Low-angle rotary shadowing electron microscopy (13) and biochemical studies (12) of purified radixin suggest that in the open conformation it is an extended filamentous structure with globular N and C termini that is greater than 240 Å in length. Signal transduction systems, such as the epidermal growth factor and Rho A pathways, induce phosphorylation of ERM proteins at the conserved C-terminal threonine via a number of kinases, including Rho kinase and protein kinase Cα (21, 28). Thus, conformational regulation of ERM proteins can be a point of integration of ERM activity with signal transduction pathways. The overall concept of ERM regulation, then, is centered upon a transition between an inactive, closed conformation that is mediated by the FERM-CTD interaction and an active, open conformation that is regulated by phosphorylation. In these two states, ERM proteins likely interact with different sets of binding partners, resulting in distinct functional outcomes.Open in a separate windowFIG. 1.ERM tertiary structure as represented by the crystal structure of full-length Sf-moesin (20), but with the merlin amino acid sequence substituted for Sf-moesin. Approximate boundary amino acid residues for all domains appear at the top of the figure. Each domain is assigned a different color. The ERM structure consists of an N-terminal FERM domain folded into three lobes, F1, F2, and F3. This is followed by a central α-helical domain containing three subhelices (αA, αB, and αC) and a CTD with four short helices. An ERM protein is thought to have an open conformation, an extended structure with the FERM domain and the CTD separated by the α-helical domain, that is more than 240 Å long. In the closed conformation, the α-helical domain bends at the αA-αB junction and again at the αB-αC junction, causing the CTD to be positioned over F2 and F3 of the FERM domain. More than half of the surface of the FERM domain is masked by interaction with the CTD, αA, and parts of αB and αC.Like the classical ERMs, merlin is also thought to be regulated by changes in conformation. The FERM domain and the CTD of merlin interact with each other, albeit at a lower level of affinity than the ezrin FERM domain and the CTD (29). There are important differences, however, between merlin and the other ERM proteins. First, phosphorylation of the conserved C-tail threonine T576 has not been reported to occur in mammalian merlin, and nonphosphorylatable and phosphomimetic substitutions at this site have no effect on merlin activity (42). Instead, merlin is phosphorylated at serine 518 in the CTD, a target of the p21-activated kinase PAK and protein kinase A (1, 18, 47). The growth-suppressive function of merlin is activated by dephosphorylation of S518 by the phosphatase PP1δ in a density-dependent manner (14). Second, it was reported in a study using FERM domain and CTD truncates of merlin that only cotransfection of both the N-and C-terminal halves resulted in growth suppression (38). Together, these observations suggested a model of inactive, phosphorylated merlin in an open conformation that, upon cell-to-cell contact, is dephosphorylated and transitions to a closed, growth suppressive conformation.The existing model for conformational regulation described above is inferred from indirect data and assays that generally measure the interaction of isolated FERM and CTD truncates rather than full-length molecules (9, 29, 38). It has been impossible to test directly because tools have not been available to specifically assay for either the open or the closed form of merlin. Therefore, we have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer (FRET), both as purified protein and in live cells. Using these tools, we show that merlin exists predominately as a monomer in a stable, largely closed conformation. Additionally, we find that the closed conformation is largely mediated by the central α-helical domain; the contribution of the FERM-CTD interaction appears to be less significant than previously thought. Finally, we find that phosphorylation and protein interaction cause unexpectedly small changes in merlin conformation. We propose a new and more refined model for merlin regulation, in which merlin function is regulated by specific but subtle conformational changes that modulate the interaction between the FERM domain and the CTD.  相似文献   

12.
Hexameric helicases are molecular motor proteins that utilize energy obtained from ATP hydrolysis to translocate along and/or unwind nucleic acids. In this study, we investigate the dynamic behavior of the Simian Virus 40 hexameric helicase bound to DNA by performing molecular dynamics simulations employing a coarse-grained model. Our results elucidate the two most important molecular features of the helicase motion. First, the attractive interactions between the DNA-binding domain of the helicase and the DNA backbone are essential for the helicase to exhibit a unidirectional motion along the DNA strand. Second, the sequence of ATP binding at multiple binding pockets affects the helicase motion. Specifically, concerted ATP binding does not generate a unidirectional motion of the helicase. It is only when the binding of ATP occurs sequentially from one pocket to the next that the helicase moves unidirectionally along the DNA. Interestingly, in the reverse order of sequential ATP binding, the helicase also moves unidirectionally but in the opposite direction. These observations suggest that in nature ATP molecules must distinguish between different available ATP binding pockets of the hexameric helicase in order to function efficiently. To this end, simulations reveal that the binding of ATP in one pocket induces an opening of the next ATP-binding pocket and such an asymmetric deformation may coordinate the sequential ATP binding in a unidirectional manner. Overall, these findings may provide clues toward understanding the mechanism of substrate translocation in other motor proteins.  相似文献   

13.
Acid-sensing ion channels are cation channels activated by external protons and play roles in nociception, synaptic transmission, and the physiopathology of ischemic stroke. Using luminescence resonance energy transfer (LRET), we show that upon proton binding, there is a conformational change that increases LRET efficiency between the probes at the thumb and finger subdomains in the extracellular domain of acid-sensing ion channels. Additionally, we show that this conformational change is lost upon mutating Asp-238, Glu-239, and Asp-260, which line the finger domains, to alanines. Electrophysiological studies showed that the single mutant D260A shifted the EC50 by 0.2 pH units, the double mutant D238A/E239A shifted the EC50 by 2.5 pH units, and the triple mutant D238A/E239A/D260A exhibited no response to protons despite surface expression. The LRET experiments on D238A/E239A/D260A showed no changes in LRET efficiency upon reduction in pH from 8 to 6. The LRET and electrophysiological studies thus suggest that the three carboxylates, two of which are involved in carboxyl/carboxylate interactions, are essential for proton-induced conformational changes in the extracellular domain, which in turn are necessary for receptor activation.  相似文献   

14.
Abstract

Because of the significant industrial, agricultural and biotechnological importance of serine protease proteinase K, it has been extensively investigated using experimental approaches such as X-ray crystallography, site-directed mutagenesis and kinetic measurement. However, detailed aspects of enzymatic mechanism such as substrate binding, release and relevant regulation remain unstudied. Molecular dynamics (MD) simulations of the proteinase K alone and in complex with the peptide substrate AAPA were performed to investigate the effect of substrate binding on the dynamics/molecular motions of proteinase K. The results indicate that during simulations the substrate-complexed proteinase K adopt a more compact and stable conformation than the substrate-free form. Further essential dynamics (ED) analysis reveals that the major internal motions are confined within a subspace of very small dimension. Upon substrate binding, the overall flexibility of the protease is reduced; and the noticeable displacements are observed not only in substrate-binding regions but also in regions opposite the substrate-binding groove/pockets. The dynamic pockets caused by the large concerted motions are proposed to be linked to the substrate recognition, binding, orientation and product release; and the significant displacements in regions opposite the binding groove/pockets are considered to play a role in modulating the dynamics of enzyme-substrate interaction. Our simulation results complement the biochemical and structural studies, highlighting the dynamic mechanism of the functional properties of proteinase K.  相似文献   

15.
Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.  相似文献   

16.
Multidrug (Mdr) transporters are membrane proteins that actively export structurally dissimilar drugs from the cell, thereby rendering the cell resistant to toxic compounds. Similar to substrate-specific transporters, Mdr transporters also undergo substrate-induced conformational changes. However, the mechanism by which a variety of dissimilar substrates are able to induce similar transport-compatible conformational responses in a single transporter remains unclear. To address this major aspect of Mdr transport, we studied the conformational behavior of the Escherichia coli Mdr transporter MdfA. Our results show that indeed, different substrates induce similar conformational changes in the transporter. Intriguingly, in addition, we observed that compounds other than substrates are able to confer similar conformational changes when covalently attached at the putative Mdr recognition pocket of MdfA. Taken together, the results suggest that the Mdr-binding pocket of MdfA is conformationally sensitive. We speculate that the same conformational switch that usually drives active transport is triggered promiscuously by merely occupying the Mdr-binding site.  相似文献   

17.
The Na,K-ATPase carries out the coupled functions of ATP hydrolysis and cation transport. These functions are performed by two distinct regions of the protein. ATP binding and hydrolysis is mediated by the large central cytoplasmic loop of about 430 amino-acids. Transmembrane cation transport is accomplished via coordination of the Na and K ions by side-chains of the amino-acids of several of the transmembrane segments. The way in which these two protein domains interact lies at the heart of the molecular mechanism of active transport, or ion pumping. We summarize evidence obtained from protein chemistry studies of the purified renal Na,K-ATPase and from bacterially expressed polypeptides which characterize these separate functions and point to various movements which may occur as the protein transits through its reaction cycle. We then describe recent work using heterologous expression of renal Na,K-ATPase in baculovirus-infected insect cells which provides a suitable system to characterize such protein motions and which can be employed to test specific models arising from recently acquired high resolution structural information on related ion pumps.  相似文献   

18.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   

19.
Putative metal-chelate-type ABC transporter HI1470/1 is homologous with vitamin B12 importer BtuCD but exhibits a distinct inward-facing conformation in contrast to the outward-facing conformation of BtuCD. Normal-mode analysis of HI1470/1 reveals the intrinsic asymmetric conformational flexibility in this transporter and demonstrates that the transition from the inward-facing to the outward-facing conformation is realized through the asymmetric motion of individual subunits of the transporter. This analysis suggests that the asymmetric arrangement of the BtuC dimer in the crystal structure of the BtuCD-F complex represents an intermediate state relating HI1470/1 and BtuCD. Furthermore, a twisting motion between transmembrane domains and nucleotide-binding domains encoded in the lowest-frequency normal mode of this type of importer is found to contribute to the conformational transitions during the whole cycle of substrate transportation. A more complete translocation mechanism of the BtuCD type importer is proposed.  相似文献   

20.
In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号