首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 4 毫秒
1.
We have characterized cytochromes P450, CYP710A13, and CYP710A14, as the sterol C22-desaturase in the moss Physcomitrella patens. GC–MS analyses demonstrated that P. patens accumulated stigmasterol as the major sterol (56–60% of total sterol) and sitosterol to a lesser extent (8–12%); this sterol profile contrasts with those in higher plants accumulating stigmasterol as a minor component. Recombinant CYP710A13 and CYP710A14 proteins prepared using a baculovirus/insect cell system exhibited the C22-desaturase activity with β-sitosterol to produce stigmasterol, while campesterol and 24-epi-campesterol were not accepted as the substrates. The K m values for β-sitosterol of CYP710A13 (1.0 ± 0.043 μM) and CYP710A14 (2.1 ± 0.17 μM) were at comparable levels of those reported with higher plant CYP710A proteins. In Arabidopsis T87 cells over-expressing CYP710A14, stigmasterol contents reached a level 20- to 72-fold higher than those in the basal level of T87 cells, confirming the C22-desaturase activity of this P450 enzyme. The occurrence of the end-products together with the enzymes involved in the last step of the pathway substantiated the presence of an entire sterol biosynthetic pathway in P. patens, providing evidence for the conservation of the sterol biosynthetic pathway through the evolutionary process of land plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Leaf wax n‐alkane δ2H values carry important information about environmental and ecophysiological processes in plants. However, the physiological and biochemical drivers that shape leaf wax n‐alkane δ2H values are not completely understood. It is particularly unclear why n‐alkanes in grasses are typically 2H‐depleted compared with plants from other taxonomic groups such as dicotyledonous plants and why C3 grasses are 2H‐depleted compared with C4 grasses. To resolve these uncertainties, we quantified the effects of leaf water evaporative 2H‐enrichment and biosynthetic hydrogen isotope fractionation on n‐alkane δ2H values for a range of C3 and C4 grasses grown in climate‐controlled chambers. We found that only a fraction of leaf water evaporative 2H‐enrichment is imprinted on the leaf wax n‐alkane δ2H values in grasses. This is interesting, as previous studies have shown in dicotyledonous plants a nearly complete transfer of this 2H‐enrichment to the n‐alkane δ2H values. We thus infer that the typically observed 2H‐depletion of n‐alkanes in grasses (as opposed to dicots) is because only a fraction of the leaf water evaporative 2H‐enrichment is imprinted on the δ2H values. Our experiments also show that differences in n‐alkane δ2H values between C3 and C4 grasses are largely the result of systematic differences in biosynthetic fractionation between these two plant groups, which was on average ?198‰ and?159‰ for C3 and C4 grasses, respectively.  相似文献   

3.
《Cell reports》2023,42(2):112078
  1. Download : Download high-res image (210KB)
  2. Download : Download full-size image
  相似文献   

4.
Acrylamide is a food contaminant with a range of toxic effects. Carnosic acid (C20H28O4) is a phenolic compound found in plants and has many beneficial effects. In this study, we aimed at investigating the effect of carnosic acid on acrylamide‐induced liver damage. Rats (n = 7) were allotted to control, carnosic acid, acrylamide, acrylamide + carnosic acid groups. Animals were euthanized. Their blood was taken for biochemical analysis, and liver tissue was excised for morphological, immunohistochemical, and immunoblotting analyses. As a result, acrylamide reduced bodyweight, liver weight, catalase, and total antioxidant capacity levels but increased alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, malondialdehyde, total oxidant status, oxidative stress index levels, Nrf2, and Keap1 protein levels. In addition, acrylamide disrupted liver histology leading to vascular congestion, cellular infiltration, necrotic cells, and so forth. Carnosic acid cotreatment ameliorated the altered biochemical parameters, liver histology, Nrf2, and Keap1 enzyme levels. In conclusion, carnosic acid has the potential to be used as a protective agent against acrylamide‐induced liver damage.  相似文献   

5.
6.
The complement system is important in both innate and adaptive host defense against microbial infection in vertebrates. It contains three pathways: the classical, alternative, and lectin pathways. Complement component factors B and D are two crucial proteases in the alternative pathway. In this study, the genes of complement factors Bf/C2 and Df from channel catfish, Ictalurus punctatus were identified and characterized. Two complement factor B-related genes, Bf/C2A and Bf/C2B, and factor D gene Df were identified. Phylogenetic analysis suggested that Bf/C2A and Bf/C2B is likely orthologous to factor B and factor C2, respectively. Southern blot results suggested that these three genes are all single-copy genes in the catfish genome. The catfish Bf/C2A, Bf/C2B and Df genes were genetically mapped on linkage group 3, 20 and 29, respectively. Bf/C2A and Bf/C2B are highly expressed in liver and kidney, while Df is highly expressed in gill and spleen. After infection with Edwardsiella ictaluri, the expression of Bf/C2A, Bf/C2B and Df genes were found to be remarkably induced in the gill, liver, spleen and kidney at some sampling times, indicating that these three complement factors play a pivotal role in immune responses after the bacterial infection in catfish.  相似文献   

7.
The C2 domain is a targeting domain that responds to intracellular Ca2+ signals in classical protein kinases (PKCs) and mediates the translocation of its host protein to membranes. Recent studies have revealed a new motif in the C2 domain, named the lysine-rich cluster, that interacts with acidic phospholipids. The purpose of this work was to characterize the molecular mechanism by which PtdIns(4,5)P2 specifically interacts with this motif. Using a combination of isothermal titration calorimetry, fluorescence resonance energy transfer and time-lapse confocal microscopy, we show here that Ca2+ specifically binds to the Ca2+-binding region, facilitating PtdIns(4,5)P2 access to the lysine-rich cluster. The magnitude of PtdIns(4,5)P2 binding is greater than in the case of other polyphosphate phosphatidylinositols. Very importantly, the residues involved in PtdIns(4,5)P2 binding are essential for the plasma membrane localization of PKCα when RBL-2H3 cells are stimulated through their IgE receptors. Additionally, CFP-PH and CFP-C1 domains were used as bioprobes to demonstrate the co-existence of PtdIns(4,5)P2 and diacylglycerol in the plasma membrane, and it was shown that although a fraction of PtdIns(4,5)P2 is hydrolyzed to generate diacylglycerol and IP3, an important amount still remains in the membrane where it is available to activate PKCα. These findings entail revision of the currently accepted model of PKCα recruitment to the membrane and its activation.  相似文献   

8.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

9.
C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) – regardless of the photosynthetic superiority of the C4 pathway – in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred. Received: 3 July 1997 / Accepted: 3 December 1997  相似文献   

10.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号