首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uromodulin (or Tamm-Horsfall protein) is the most abundant protein in human urine under physiological conditions. Little is known about the molecular mechanism of uromodulin secretion. By extensive Mass Spectrometry analyses we mapped the C-termini of human and murine urinary proteins demonstrating that urinary uromodulin is generated by a conserved C-terminal proteolytic cleavage and retains its entire ZP domain.  相似文献   

2.
Many eukaryotic extracellular proteins share a sequence of unknown function, called the zona pellucida (ZP) domain. Among these proteins are the mammalian sperm receptors ZP2 and ZP3, non-mammalian egg coat proteins, Tamm-Horsfall protein (THP), glycoprotein-2 (GP-2), alpha- and beta-tectorins, transforming growth factor (TGF)-beta receptor III and endoglin, DMBT-1 (deleted in malignant brain tumour-1), NompA (no-mechanoreceptor-potential-A), Dumpy and cuticlin-1 (refs 1,2). Here, we report that the ZP domain of ZP2, ZP3 and THP is responsible for polymerization of these proteins into filaments of similar supramolecular structure. Most ZP domain proteins are synthesized as precursors with carboxy-terminal transmembrane domains or glycosyl phosphatidylinositol (GPI) anchors. Our results demonstrate that the C-terminal transmembrane domain and short cytoplasmic tail of ZP2 and ZP3 are not required for secretion, but are essential for assembly. Finally, we suggest a molecular basis for dominant human hearing disorders caused by point mutations within the ZP domain of alpha-tectorin.  相似文献   

3.
The zona pellucida is an extracellular matrix consisting of three glycoproteins that surrounds mammalian eggs and mediates fertilization. The primary structures of mouse ZP1, ZP2, and ZP3 have been deduced from cDNA. Each has a predicted signal peptide and a transmembrane domain from which an ectodomain must be released. All three zona proteins undergo extensive co- and post-translational modifications important for secretion and assembly of the zona matrix. In this report, native zonae pellucidae were isolated and structural features of individual zona proteins within the mixture were determined by high resolution electrospray mass spectrometry. Complete coverage of the primary structure of native ZP3, 96% of ZP2, and 56% of ZP1, the least abundant zona protein, was obtained. Partial disulfide bond assignments were made for each zona protein, and the size of the processed, native protein was determined. The N termini of ZP1 and ZP3, but not ZP2, were blocked by cyclization of glutamine to pyroglutamate. The C termini of ZP1, ZP2, and ZP3 lie upstream of a dibasic motif, which is part of, but distinct from, a proprotein convertase cleavage site. The zona proteins are highly glycosylated and 4/4 potential N-linkage sites on ZP1, 6/6 on ZP2, and 5/6 on ZP3 are occupied. Potential O-linked carbohydrate sites are more ubiquitous, but less utilized.  相似文献   

4.
The zona pellucida (ZP) surrounding the oocyte is an extracellular fibrillar matrix that plays critical roles during fertilization including species-specific gamete recognition and protection from polyspermy. The mouse ZP is composed of three proteins, ZP1, ZP2, and ZP3, all of which have a ZP polymerization domain that directs protein fibril formation and assembly into the three-dimensional ZP matrix. Egg coats surrounding oocytes in nonmammalian vertebrates and in invertebrates are also fibrillar matrices and are composed of ZP domain-containing proteins suggesting the basic structure and function of the ZP/egg coat is highly conserved. However, sequence similarity between ZP domains is low across species and thus the mechanism for the conservation of ZP/egg coat structure and its function is not known. Using approaches classically used to identify amyloid including conformation-dependent antibodies and dyes, X-ray diffraction, and negative stain electron microscopy, our studies suggest the mouse ZP is a functional amyloid. Amyloids are cross-β sheet fibrillar structures that, while typically associated with neurodegenerative and prion diseases in mammals, can also carry out functional roles in normal cells without resulting pathology. An analysis of the ZP domain from mouse ZP3 and ZP3 homologs from five additional taxa using the algorithm AmylPred 2 to identify amyloidogenic sites, revealed in all taxa a remarkable conservation of regions that were predicted to form amyloid. This included a conserved amyloidogenic region that localized to a stretch of hydrophobic amino acids previously shown in mouse ZP3 to be essential for fibril assembly. Similarly, a domain in the yeast protein α-agglutinin/Sag 1p, that possesses ZP domain-like features and which is essential for mating, also had sites that were predicted to be amyloidogenic including a hydrophobic stretch that appeared analogous to the critical site in mouse ZP3. Together, these studies suggest that amyloidogenesis may be a conserved mechanism for ZP structure and function across billions of years of evolution.  相似文献   

5.
Three glycoproteins (ZP1, ZP2, and ZP3) are synthesized in growing mouse oocytes and secreted to form an extracellular zona pellucida that mediates sperm binding and fertilization. Each has a signal peptide to direct it into a secretory pathway, a "zona" domain implicated in matrix polymerization and a transmembrane domain from which the ectodomain must be released. Using confocal microscopy and enhanced green fluorescent protein (EGFP), the intracellular trafficking of ZP3 was observed in growing mouse oocytes. Replacement of the zona domain with EGFP did not prevent secretion of ZP3, suggesting the presence of trafficking signals and a cleavage site in the carboxyl terminus. Analysis of linker-scanning mutations of a ZP3-EGFP fusion protein in transient assays and in transgenic mice identified an eight-amino-acid hydrophobic region required for secretion and incorporation into the zona pellucida. The hydrophobic patch is conserved among mouse zona proteins and lies between a potential proprotein convertase (furin) cleavage site and the transmembrane domain. The cleavage site that releases the ectodomain from the transmembrane domain was defined by mass spectrometry of native zonae pellucidae and lies N-terminal to a proprotein convertase site that is distinct from the hydrophobic patch.  相似文献   

6.
Clathrin-coated pits at the cell surface select material for transportation into the cell interior. A major mode of cargo selection at the bud site is via the micro 2 subunit of the AP-2 adaptor complex, which recognizes tyrosine-based internalization signals. Other internalization motifs and signals, including phosphorylation and ubiquitylation, also tag certain proteins for incorporation into a coated vesicle, but the mechanism of selection is unclear. Disabled-2 (Dab2) recognizes the FXNPXY internalization motif in LDL-receptor family members via an N-terminal phosphotyrosine-binding (PTB) domain. Here, we show that in addition to binding AP-2, Dab2 also binds directly to phosphoinositides and to clathrin, assembling triskelia into regular polyhedral coats. The FXNPXY motif and phosphoinositides contact different regions of the PTB domain, but can stably anchor Dab2 to the membrane surface, while the distal AP-2 and clathrin-binding determinants regulate clathrin lattice assembly. We propose that Dab2 is a typical member of a growing family of cargo-specific adaptor proteins, including beta-arrestin, AP180, epsin, HIP1 and numb, which regulate clathrin-coat assembly at the plasma membrane by synchronizing cargo selection and lattice polymerization events.  相似文献   

7.
The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor β (TGF-β) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-β-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 Å crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3.  相似文献   

8.
Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) “domain”. Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo‐electron microscopy study of uromodulin (UMOD)/Tamm–Horsfall protein, the most abundant protein in human urine and an archetypal ZP module‐containing molecule, in its mature homopolymeric state. UMOD forms a one‐start helix with an unprecedented 180‐degree twist between subunits enfolded by interdomain linkers that have completely reorganized as a result of propeptide dissociation. Lateral interaction between filaments in the urine generates sheets exposing a checkerboard of binding sites to capture uropathogenic bacteria, and UMOD‐based models of heteromeric vertebrate egg coat filaments identify a common sperm‐binding region at the interface between subunits.  相似文献   

9.
Using computer methods for multiple alignment, sequence motif search, and tertiary structure modeling, we show that eukaryotic translation elongation factor 1γ (EF1γ) contains an N-terminal domain related to class θ glutathione S-transferases (GST). GST-like proteins related to class θ comprise a large group including, in addition to typical GSTs and EF1γ, stress-induced proteins from bacteria and plants, bacterial reductive dehalogenases and β-etherases, and several uncharacterized proteins. These proteins share 2 conserved sequence motifs with GSTs of other classes (α, μ, and π). Tertiary structure modeling showed that in spite of the relatively low sequence similarity, the GST-related domain of EF1γ is likely to form a fold very similar to that in the known structures of class α, μ, and π GSTs. One of the conserved motifs is implicated in glutathione binding, whereas the other motif probably is involved in maintaining the proper conformation of the GST domain. We predict that the GST-like domain in EF1γ is enzymatically active and that to exhibit GST activity, EF1γ has to form homodimers. The GST activity may be involved in the regulation of the assembly of multisubunit complexes containing EF1 and aminoacyl-tRNA synthetases by shifting the balance between glutathione, disulfide glutathione, thiol groups of cysteines, and protein disulfide bonds. The GST domain is a widespread, conserved enzymatic module that may be covalently or noncovalently complexed with other proteins. Regulation of protein assembly and folding may be 1 of the functions of GST.  相似文献   

10.
Tudor domains bind symmetrical dimethylated arginines   总被引:8,自引:0,他引:8  
The Tudor domain is an approximately 60-amino acid structure motif in search of a function. Herein we show that the Tudor domains of the spinal muscular atrophy gene product SMN, the splicing factor 30 kDa (SPF30), and the Tudor domain-containing 3 (TDRD3) proteins interacted with arginine-glycine-rich motifs in a methylarginine-dependent manner. The Tudor domains also associated with methylarginine-containing cellular proteins, providing evidence that methylated arginines represent physiological ligands for this protein module. In addition, we report that spliceosomal small nuclear ribonucleoprotein particles core Sm proteins accumulated in the cytoplasm when arginine methylation was inhibited with adenosine dialdehyde or in the presence of an excessive amount of unmethylated arginine-glycine-rich peptides. These data provide in vivo evidence in support of a role for arginine methylation in the proper assembly and localization of spliceosomal Sm proteins.  相似文献   

11.
12.
Boja ES  Hoodbhoy T  Garfield M  Fales HM 《Biochemistry》2005,44(50):16445-16460
The mammalian zona pellucida is an egg extracellular matrix to which sperm bind. Mouse zonae are composed of three glycoproteins (ZP1, ZP2, and ZP3), while rat zonae contain four (ZP1, ZP2, ZP3, and ZP4/ZPB). Mouse sperm bind to zonae comprised solely of mouse ZP2 and ZP3. In this report, we show that rat sperm also bind to these zonae, indicating that ZP2 and ZP3 contain a "minimum structure(s)" to which rodent sperm can bind, and ZP1 and ZP4/ZPB are dispensable in these two rodents. These data are consistent with our mass spectrometric analysis of the native rat zona pellucida proteome (defined as the fraction of the total rat proteome to which the zonae glycoproteins contribute) demonstrating that the rat zonae glycoproteins share a high degree of conservation of structural features with respect to their mouse counterparts. The primary sequences of the rat zonae proteins have been deduced from cDNA. Each zona protein undergoes extensive co- and post-translational modification prior to its secretion and incorporation into an extracellular zona matrix. Each has a predicted N-terminal signal peptide that is cleaved off once protein translation begins and an anchoring C-terminal transmembrane domain from which the mature protein is released. Mass spectrometric analysis with a limited amount of native material allowed determination of the mature N-termini of rat ZP1 and ZP3, both of which are characterized by cyclization of glutamine to pyroglutamate; the N-terminus of ZP2 was identified by Edman degradation. The mature C-termini of ZP1 and ZP3 end two amino acids upstream of a conserved dibasic residue that is part of, but distinct from, the consensus furin cleavage sequence, while the C-terminus of ZP2 was not determined. Each zona protein contains a "zona domain" with eight conserved cysteine residues that is thought to play a role in the polymerization of the zona proteins into matrix filaments. Partial disulfide bond assignment indicates that the intramolecular disulfide patterns in rat ZP1, ZP2, and ZP3 are identical to those of their corresponding mouse counterparts. Last, nearly all potential N-glycosylation sites are occupied in the rat zonae glycoproteins (three of three for ZP1, six or seven of seven for ZP2, and four or five of six for ZP3). In comparison, potential O-glycosylation sites are numerous (59-83 Ser/Thr residues), but only two regions were observed to carry O-glycans in rat ZP3.  相似文献   

13.
Naturally occurring proteins in cellular networks often share peptide motifs. These motifs have been known to play a pivotal role in protein interactions among the components of a network. However, it remains unknown how these motifs have contributed to the evolution of the protein network. Here we addressed this issue by a synthetic biology approach. Through the motif programming method, we have constructed an artificial protein library by mixing four peptide motifs shared among the Bcl-2 family proteins that positively or negatively regulate the apoptosis networks. We found one strong pro-apoptotic protein, d29, and two proteins having moderate, but unambiguous anti-apoptotic functions, a10 and d16, from the 28 tested clones. Thus both the pro- and anti-apoptotic modulators were present in the library, demonstrating that functional proteins with opposing effects can emerge from a single pool prepared from common motifs. Motif programming studies have exhibited that the annotated function of the motifs were significantly influenced by the context that the motifs embedded. The results further revealed that reshuffling of a set of motifs realized the promiscuous state of protein, from which disparate functions could emerge. Our finding suggests that motifs contributed to the plastic evolvability of the protein network.  相似文献   

14.
In TNF-treated cells, TNFR1, TNFR-associated death domain protein (TRADD), Fas-associated death domain protein, and receptor-interacting protein kinase proteins form the signaling complex via modular interaction within their C-terminal death domains. In this paper, we report that the death domain SXXE/D motifs (i.e., S381DHE motif of TNFR1-death domain as well as S215LKD and S296LAE motifs of TRADD-death domain) are phosphorylated, and this is required for stable TNFR1-TRADD complex formation and subsequent activation of NF-κB. Phospho-S215LKD and phospho-S296LAE motifs are also critical to TRADD for recruiting Fas-associated death domain protein and receptor-interacting protein kinase. IκB kinase β plays a critical role in TNFR1 phosphorylation of S381, which leads to subsequent T cell migration and accumulation. Consistently, we observed in inflammatory bowel disease specimens that TNFR1 was constitutively phosphorylated on S381 in those inflammatory T cells, which had accumulated in high numbers in the inflamed mucosa. Therefore, SXXE/D motifs found in the cytoplasmic domains of many TNFR family members and their adaptor proteins may serve to function as a specific interaction module for the α-helical death domain signal transduction.  相似文献   

15.
AP-2 is a key regulator of the endocytic protein machinery driving clathrin-coated vesicle (CCV) formation. One critical function, mediated primarily by the AP-2 alpha-ear, is the recruitment of accessory proteins. NECAPs are alpha-ear-binding proteins that enrich on CCVs. Here, we have solved the structure of the conserved N-terminal region of NECAP 1, revealing a unique module in the pleckstrin homology (PH) domain superfamily, which we named the PHear domain. The PHear domain binds accessory proteins bearing FxDxF motifs, which were previously thought to bind exclusively to the AP-2 alpha-ear. Structural analysis of the PHear domain reveals the molecular surface for FxDxF motif binding, which was confirmed by site-directed mutagenesis. The reciprocal analysis of the FxDxF motif in amphiphysin I identified distinct binding requirements for binding to the alpha-ear and PHear domain. We show that NECAP knockdown compromises transferrin uptake and establish a functional role for NECAPs in clathrin-mediated endocytosis. Our data uncover a striking convergence of two evolutionarily and structurally distinct modules to recognize a common peptide motif and promote efficient endocytosis.  相似文献   

16.
17.
The presence of peptide motifs within the proteins provides the synthetic biologist with the opportunity to fabricate novel proteins through the programming of these motifs. Here we describe a method that enables one to combine multiple peptide motifs to generate a combinatorial protein library. With this method, a set of sense and antisense oligonucleotide primers were prepared. These primers were mixed and polymerized, so that the resultant DNA consisted of combinatorial polymers of multiple microgenes created from the stochastic assembly of the sense and antisense primers. With this motif-mixing method, we prepared a protein library from the BH1-4 motifs shared among Bcl-2 family proteins. Among the 41 clones created, 70% of clones had a stable, presumably folded expression product in human cells, which was detectable by immunohistochemistry and western blot. The proteins obtained varied with respect to both the number and the order of the four motifs. The method enables homology-independent polymerization of DNA blocks that coded motif sequences, and the frequency of each motif within a library can be adjusted in a tailor-made manner. This motif programming has a potential for creating a library with a large proportion of folded/functional proteins.  相似文献   

18.
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.  相似文献   

19.
Little is known about the mechanisms used by enveloped viruses to separate themselves from the cell surface at the final step of budding. However, small sequences in the Gag proteins of several retroviruses (L domains) have been implicated in this process. A sequence has been identified in the M proteins of rhabdoviruses that closely resembles the PPPPY motif in the L domain of Rous sarcoma virus (RSV), an avian retrovirus. To evaluate whether the PPPY sequence in vesicular stomatitis virus (VSV) M protein has an activity analogous to that of the retroviral sequence, M-Gag chimeras were characterized. The N-terminal 74 amino acids of the VSV (Indiana) M protein, including the PPPY motif, was able to replace the L domain of RSV Gag and allow the assembly and release of virus-like particles. Alanine substitutions in the VSV PPPY motif severely compromised the budding activity of this hybrid protein but not that of another chimera which also contained the RSV PPPPY sequence. We conclude that this VSV sequence is functionally homologous to the RSV L domain in promoting virus particle release, making this the first example of such an activity in a virus other than a retrovirus. Both the RSV and VSV motifs have been shown to interact in vitro with certain cellular proteins that contain a WW interaction module, suggesting that the L domains are sites of interaction with unknown host machinery involved in virus release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号