首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol‐auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE‐containing cells were exposed to membrane‐impermeant collisional quenchers (spin‐labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass‐bead lysis or repeated freeze‐thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.   相似文献   

2.
Transmembrane distribution of sterol in the human erythrocyte   总被引:2,自引:0,他引:2  
The transbilayer cholesterol distribution of human erythrocytes was examined by two independent techniques, quenching of dehydroergosterol fluorescence and fluorescence photobleaching of NBD-cholesterol. Dehydroergosterol in conjunction with leaflet selective quenching showed that, at equilibrium, 75% of the sterol was localized to the inner leaflet of resealed erythrocyte ghosts. NBD-cholesterol and fluorescence photobleaching displayed two diffusion values in both resealed ghosts and intact erythrocytes. The fractional contribution of the fast and slow diffusion constants of NBD-labelled cholesterol represent its inner and outer leaflet distribution. At room temperature the plasma membrane inner leaflet of erythrocyte ghosts as well as intact erythrocytes cells contained 78% of the plasma membrane sterol. The erythrocyte membrane transbilayer distribution of sterol was independent of temperature. In conclusion, dehydroergosterol and NBD-cholesterol data are consistent with an enrichment of cholesterol in the inner leaflet of the human erythrocyte.  相似文献   

3.
Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids.  相似文献   

4.
Membrane cholesterol is distributed asymmetrically both within the cell or within cellular membranes. Elaboration of intracellular cholesterol trafficking, targeting and intramembrane distribution has been spurred by both molecular and structural approaches. The expression of recombinant sterol carrier proteins in L-cell fibroblasts has been especially useful in demonstrating for the first time that such proteins actually elicit intracellular and intra-plasma membrane redistribution of sterol. Additional advances in the use of native fluorescent sterols allowed resolution of transbilayer and lateral cholesterol domains in plasma membranes from cultured fibroblasts, brain synaptosomes and erythrocytes. In all three cell surface membranes, cholesterol is enriched in the inner, cytofacial leaflet. Up to three different cholesterol domains have been identified in the lateral plane of the plasma membrane: a fast exchanging domain comprising less than 10% of cholesterol, a slowly exchanging domain comprising about 30% of cholesterol, and a very slowly or non-exchangeable sterol domain comprising 50–60.

Of plasma membrane cholesterol. Factors modulating plasma membrane cholesterol domains include polyunsaturated fatty acids, expression of intracellular sterol carrier proteins, drugs such as ethanol, and several membrane pathologies (systemic lupus erythematosus, sickle cell anaemia and aging). Disturbances in plasma membrane cholesterol domains after transbilayer fluidity gradients in plasma membranes. Such changes are associated with decreased Ca2+ -ATPase and Na +, K+ -ATPase activity. Thus, the size, dynamics and distribution of cholesterol domains within membranes not only regulate cholesterol efflux/influx but also modulate plasma membrane protein functions and receptor-effector coupled systems.  相似文献   

5.
W D Sweet  F Schroeder 《FEBS letters》1988,229(1):188-192
Sterols are asymmetrically distributed between the leaflets of animal cell plasma membranes. Although transbilayer migration of sterols is extremely rapid, s to min, previous experimental manipulations have not altered their transmembrane steady-state distribution. However, the effect of polyunsaturated fatty acids has not been reported. When cultured in a lipid-free, chemically defined culture medium, LM fibroblasts do not synthesize polyunsaturated fatty acids but will incorporate polyunsaturated fatty acids into their plasma membranes if supplied in the medium. Sterol transbilayer distribution in LM plasma membranes was determined from quenching of fluorescence of dehydroergosterol by trinitrophenyl groups selectively attached to the exofacial leaflet. When cells are cultured in lipid-free media, 28.1% of the plasma membrane sterol is located in the exofacial (outside) leaflet. In contrast, when cells are cultured with linoleate- or linolenate-supplemented medium, 71.8% and 75.5% of the plasma membrane sterol is exofacial, respectively.  相似文献   

6.
The effects of polyunsaturated fatty acids and lipid peroxidation on LM fibroblast plasma membrane individual leaflet sterol distribution and structural order were examined. The cytofacial (inner) leaflet was more rigid and contained more sterol than the exofacial (outer) leaflet. The static (limiting anisotropy) and dynamic (rotational relaxation time) structural components of diphenylhexatriene (DPH) motion in each leaflet were determined by phase and modulation fluorometry measurements combined with leaflet-specific quenching by trinitrophenyl groups. Polyunsaturated fatty acids, incorporated into the membrane phospholipids by culture medium supplementation, decreased the limiting anisotrophy of DPH in the cytofacial but not the exofacial leaflet thereby abolishing the transbilayer difference in fluidity. Peroxidation by Fe(II) + H2O2 resulted in a rigidification (increase in limiting anisotropy and rotational relaxation time) of the plasma membrane exofacial leaflet, regardless of whether the membranes contained saturated and monounsaturated fatty acids or were enriched in either linoleate or linolenate. The structure of the cytofacial leaflet reported by DPH was unaffected. Plasma membrane transbilayer sterol distribution, measured by leaflet-specific quenching of dehydroergosterol fluorescence, indicated that 20-28% of the sterol was localized in the exofacial leaflet. Polyunsaturated fatty acid supplementation of LM fibroblasts resulted in a complete reversal of plasma membrane transbilayer sterol distribution (72-76% exofacial leaflet). Sterol transbilayer distribution between the membrane leaflets was completely resistant to alteration by exposure to crosslinking agents and peroxidation in control plasma membranes and by peroxidation in linoleate- or linolenate-supplemented membranes.  相似文献   

7.
The potential role of liver fatty acid binding protein (L-FABP) in modulating cellular sterol distribution was examined in mouse L-cell fibroblasts transfected with cDNA encoding L-FABP. L-cells were chosen because they contain only a small amount of endogenous FABP which does not bind [3H]cholesterol, does not enhance intermembrane sterol transfer, and whose content is unaltered by the expression of L-FABP. Transfected L-cells expressed 0.34% of cytosolic protein as L-FABP. Transfection alone with low expression of L-FABP (0.008% of cytosolic protein) had no effect on any of the parameters tested. Three aspects of cellular sterol transfer were examined. First, cellular sterol uptake, monitored by [3H]cholesterol and the fluorescent sterol, delta-5,7,9(11),22-ergostatetraen-3 beta-ol, was increased 21.5 +/- 2.6% (p less than 0.001) in L-cells expressing L-FABP. This increase was not accounted for by increased sterol esterification in the cells expressing L-FABP. Inhibition of both cholesterol transfer and esterification with 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]propanamide from Sandoz abolished the L-FABP related enhancement of both [3H]cholesterol uptake and esterification. Second, plasma membrane transbilayer distribution of sterol, determined by fluorescence methods indicated that the majority of sterol was in the inner leaflet of the plasma membrane. In transfected cells expressing L-FABP, twice as much sterol (28 +/- 4%) was present in the exofacial leaflet of the plasma membrane as compared to that of control cells (15 +/- 2%). Third, expression of L-FABP enhanced sterol transfer from the plasma membrane to microsomes in intact cells. Treatment of [3H]cholesterol or [3H]oleate-loaded cells with sphingomyelinase resulted in increased formation of radiolabeled cholesterol ester, consistent with enhanced microsomal esterification of plasma membrane derived cholesterol. Concomitantly, plasma membrane [3H]cholesterol became less accessible to oxidation by cholesterol oxidase. Sphingomyelinase-stimulated cholesterol esterification was 21 +/- 3% greater in transfected cells. Concomitantly, accessibility of plasma membrane [3H]cholesterol to cholesterol oxidase was decreased 18 +/- 3% in cells expressing L-FABP. These differences are consistent with the ability of L-FABP to influence sterol transport and plasma membrane transbilayer sterol distribution in intact cells.  相似文献   

8.
Niemann-Pick C1-like 1 (NPC1L1) is a recently identified protein that mediates intestinal cholesterol absorption and regulates biliary cholesterol excretion. The itineraries and kinetics of NPC1L1 trafficking remain uncertain. In this study, we have visualized movement of NPC1L1-enhanced green fluorescent protein (NPC1L1-EGFP) and cholesterol analogs in hepatoma cells. At steady state, about 42% of NPC1L1 resided in the transferrin (Tf)-positive, sterol-enriched endocytic recycling compartment (ERC), whereas time-lapse microscopy demonstrated NPC1L1 traffic between the plasma membrane and the ERC. Fluorescence recovery after photobleaching revealed rapid recovery (half-time approximately 2.5 min) of about 35% of NPC1L1 in the ERC, probably replenished from peripheral sorting endosomes. Acute cholesterol depletion blocked internalization of NPC1L1-EGFP and Tf and stimulated recycling of NPC1L1-EGFP from the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells, NPC1L1 resided almost exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between the cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1-mediated cellular sterol uptake.  相似文献   

9.
In the last decade evidence has accumulated that small domains of 50–700 nm in diameter are located in the exoplasmic leaflet of the plasma membrane. Most of these domains supposedly consist of specific sets of lipids and proteins, and are believed to coordinate signal transduction cascades. Whether similar domains are also present in the cytoplasmic leaflet of the plasma membrane is unclear so far. To investigate the presence of cytoplasmic leaflet domains, the H-Ras membrane-targeting sequence was fused to the C-terminus of the enhanced yellow fluorescent protein. Using single-molecule fluorescence microscopy, trajectories of individual molecules diffusing in the cytoplasmic leaflet of the plasma membrane were recorded. From these trajectories, the diffusion of individual membrane-anchored enhanced yellow fluorescent protein molecules was studied in live cells on timescales from 5 to 200 ms. The results show that the diffusion of 30–40% of the molecules is constrained in domains with a typical size of 200 nm. Neither breakdown of actin nor cholesterol extraction changed the domain characteristics significantly, indicating that the observed domains may not be related to the membrane domains identified so far.  相似文献   

10.
Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)–endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.  相似文献   

11.
The lipid composition and transbilayer distribution of plasma membrane isolated from primary tumor (L-929, LM, A-9 and C3H) and nine metastatic cell lines cultured under identical conditions was examined. Cultured primary tumor and metastatic cells differed two-fold in sterol/phospholipid molar ratios. There was a direct correlation between plasma membrane anionic phospholipid (phosphatidylinositol and phosphatidylserine) content and plasma membrane sterol/phospholipid ratio. This finding may bear on the possible link between oncogenes and inositol lipids. The fluorescent sterol, dehydroergosterol, was incorporated into primary tumor and metastatic cell lines. Selective quenching of outer monolayer fluorescence by covalently linked trinitrophenyl groups demonstrated an asymmetric transbilayer distribution of sterol in the plasma membranes. The inner monolayer of the plasma membranes from both cultured primary and metastatic tumor cells was enriched in sterol as compared with the outer monolayer. Consistent with this, the inner monolayer was distinctly more rigid as determined by the limiting anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Dehydroergosterol fluorescence was temperature dependent and sensitive to lateral phase separations in phosphatidylcholine vesicles and in LM cell plasma membranes. Dehydroergosterol detected phase separations near 24 degrees C in the outer monolayer and at 21 degrees C and 37 degrees C in the inner monolayer of LM plasma membranes. Yet, no change in transbilayer sterol distribution was detected in ascending or descending temperature scans between 4 and 45 degrees C. Alterations in plasma membrane phospholipid polar head group composition by choline analogues (N,N-dimethylethanolamine, N-methylethanolamine, and ethanolamine) also did not perturb transbilayer sterol asymmetry. Treatment with phenobarbital or prilocaine, drugs that selectively fluidize the outer and inner monolayer of LM plasma membranes, respectively, did not change dehydroergosterol transbilayer distribution.  相似文献   

12.
Sterols are important lipid components of the plasma membrane (PM) in eukaryotic cells, but it is unknown how the PM retains sterols at a high concentration. Phospholipids are asymmetrically distributed in the PM, and phospholipid flippases play an important role in generating this phospholipid asymmetry. Here, we provide evidence that phospholipid flippases are essential for retaining ergosterol in the PM of yeast. A mutant in three flippases, Dnf1-Lem3, Dnf2-Lem3, and Dnf3-Crf1, and a membrane protein, Sfk1, showed a severe growth defect. We recently identified Sfk1 as a PM protein involved in phospholipid asymmetry. The PM of this mutant showed high permeability and low density. Staining with the sterol probe filipin and the expression of a sterol biosensor revealed that ergosterol was not retained in the PM. Instead, ergosterol accumulated in an esterified form in lipid droplets. We propose that ergosterol is retained in the PM by the asymmetrical distribution of phospholipids and the action of Sfk1. Once phospholipid asymmetry is severely disrupted, sterols might be exposed on the cytoplasmic leaflet of the PM and actively transported to the endoplasmic reticulum by sterol transfer proteins.  相似文献   

13.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   

14.
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.  相似文献   

15.
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.  相似文献   

16.
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A2. We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

17.
Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehydroergosterol (DHE), a well-established marker for cholesterol, by introducing simultaneous imaging of both sterols in model membranes and living cells. BCh2 had a lower affinity than DHE for the biologically relevant liquid-ordered phase in model membranes. Still, DHE and BCh2 trafficked from the plasma membrane to the endocytic recycling compartment (ERC) of BHK cells with identical kinetics. This transport pathway was strongly reduced after energy depletion of cells or expression of the dominant-negative clathrin heavy chain. The partitioning into lipid droplets of BHK and HeLa cells was higher for BCh2 than for DHE. Within droplets, the photodegradation of BCh2 was enhanced and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference of the sterol probe and causes some differential targeting of BCh2 and DHE in cells with high fat content.  相似文献   

18.
Xu X  London E 《Biochemistry》2000,39(5):843-849
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.  相似文献   

19.
Transbilayer distribution of phospholipids in bacteriophage membranes   总被引:1,自引:0,他引:1  
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A(2). We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

20.
Accumulation of excess non-esterified free cholesterol (FC) in macrophages is a key factor in macrophage death during late stages of atheroslerosis. Raising FC content in macrophages has been shown to trigger Rac activation and actin polymerisation and to inhibit cell migration. Here, the plasma membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments. DHE's surface distribution matched exactly large ruffles and membrane protrusions which were pronounced in FC-loaded cells. Plasma membrane blebs, however, formed in FC-loaded J774 cells had a homogenous staining along the membrane bilayer at 20 degrees C. The results show that even in FC-loaded cells with increased membrane cholesterol content, sterols do not form a separate phase in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号