首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C-5-substituted triazole-oxazolidinones were synthesized using a bromide catalyzed cycloaddition between aryl isocyanates and epibromohydrin followed by a three-component Huisgen cycloaddition. The library of compounds was screened for antibacterial activity against Mycobacterium smegmatis ATCC 14468, Bacillus subtilis ATCC 6633, and Enterococcus faecalis ATCC 29212. Notably, the 3-(4-acetyl-phenyl)-5-(1H-1,2,3-triazol-1-yl)methyl)-oxazolidin-2-one (18) showed an MIC of 1 μg/mL against M. smegmatis ATCC 14468, fourfold lower than the MIC measured for isoniazid.  相似文献   

2.
The present study reports on the potential of Leucosidea sericea addressing acne vulgaris. Four known compounds namely phytol acetate, triacontanol, phytol and alpha kosin and one new compound namely, (E)-3,7,11,15-tetramethylheptadec-2-ene-1,17-diol have been isolated for the first time from this plant. The ethanol extract of leaves and one of the isolated compounds, alpha kosin exhibited significant minimum inhibitory concentration (with MIC values 15.7 μg/mL and 1.9 μg/mL, respectively) against acne inducing bacteria, Propionibacterium acnes. Moreover, the transmission electron micrographs showed the efflux of intracellular content of the cells of P. acnes caused by plant extract and alpha kosin. The ethanol extract of L. sericea exhibited significant anti-inflammatory activity by suppressing interleukin 8 (IL 8) and tumour necrosis factor (TNF α) in coculture of human U937 cells and heat killed P. acnes at concentrations of 25.0, 12.5 and 6.2 μg/mL.  相似文献   

3.
The control of malaria has been complicated with increasing resistance of malarial parasite against existing antimalarials. Herein, we report the synthesis of a new series of chloroquine-chalcone based hybrids (8-22) and their antimalarial efficacy against both chloroquine-susceptible (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. Most of the compounds showed enhanced antimalarial activity as compared to chloroquine in chloroquine-resistant (K1) strain of Plasmodium falciparum. Furthermore, to unfold the mechanism of action of these synthesized hybrid molecules, we carried out hemin dependent studies, in which three compounds were found to be active.  相似文献   

4.
A series of new N-substituted 1H-dibenzo[a,c]carbazole derivatives were synthesized from dehydroabietic acid, and their structures were characterized by IR, 1H NMR and HRMS spectral data. All compounds were evaluated for their antibacterial and antifungal activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas fluorescens) and three fungi (Candida albicans, Candida tropicalis and Aspergillus niger) by serial dilution technique. Some of the synthesized compounds displayed pronounced antimicrobial activity against tested strains with low MIC values ranging from 0.9 to 15.6 μg/ml. Among them, compounds 6j and 6r exhibited potent inhibitory activity comparable to reference drugs amikacin and ketoconazole.  相似文献   

5.
A series of sugar derivatives (113) were synthesized and evaluated for antibacterial activity against Mycobacterium tuberculosis (MTB), especially multi-drug resistant (MDR) MTB, and the structure–activity relationships of these compounds were studied. The results showed that the compound OCT313 (2-acetamido-2deoxy-β-d-glucopyranosyl N,N-dimethyldithiocarbamate) (4) exhibited significant in vitro bactericidal activity, and that the dithiocarbamate group at C-1 position of the glucopyranoside ring was requisite for the antibacterial activity.  相似文献   

6.
A small library of benzimidazole functionalized chiral thioureas was prepared starting from natural amino acids (S)-alanine, (S)-phenylalanine, (S)-valine and (S)-leucine and also their (R)-isomers and studied their antimicrobial activity against a various Gram-positive and Gram-negative bacterial strains. In this study, compounds 5g and 5j were found to exhibit good antibacterial activity against both Gram-positive and Gram-negative bacterial strains such as Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Klebsiella planticola, Escherichia coli and Pseudomonas aeruginosa. In the cytotoxicity study, thioureas derived from non-natural amino acids 5al showed good activity against human cancer cell lines A549, MCF7, DU145, HeLa, and no cytotoxicity was observed with their antipodes 6al.  相似文献   

7.
We report herein the design and synthesis of novel 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fluoroquinolone derivatives based on the structures of new fluoroquinolones IMB and DZH. The antibacterial activity of these newly synthesized compounds was also evaluated and compared with gemifloxacin, ciprofloxacin, and levofloxacin. Results revealed that all of the target compounds 10-27 have good potency in inhibiting the growth of Staphylococcus aureus including MSSA (MIC: 0.125-8 μg/mL), Staphylococcus epidermidis including MRSE (MIC: 0.25-16 μg/mL), Streptococcus pneumoniae (MIC: 0.125-4 μg/mL), and Escherichia coli (MIC: 0.25-0.5 μg/mL). In particular, some compounds showed useful activity against several fluoroquinolone-resistant strains, and the most active compound 15 was found to be 16-128, 2-32, and 4-8-fold more potent than the three reference drugs against fluoroquinolone-resistant MSSA, MRSA, and MRSE.  相似文献   

8.
A number of benzoxazinyl-oxazolidinones bearing 3-trizolylmethyl or 3-carboxamide side chain were designed and synthesized with the aim to develop antibacterial agents with improved properties. In vitro antibacterial activities of these novel compounds were evaluated against a panel of resistant and susceptible Gram-positive bacteria. Most analogues bearing 3-trizolylmethyl showed good to moderate antibacterial activities. Compound 12a exhibited a fourfold increase in activity compared with linezolid against all the tested strains, which was identified to be a promising antibacterial agent for further evaluation.  相似文献   

9.
A library of seventeen novel 1,2,3-triazole derivatives were efficiently synthesized in excellent yields by the popular ‘click chemistry’ approach and evaluated in vitro for their anti-tubercular activity against Mycobacterium tuberculosis H37Ra (ATCC 25177 strain). Among the series, six compounds exhibited significant activity with minimum inhibitory concentration (MIC) values ranging from 3.12 to 0.78 μg/mL and along with no significant cytotoxicity against MBMDMQs (mouse bone marrow derived macrophages). Molecular docking of the target compounds into the active site of DprE1 (Decaprenylphosphoryl-β-d-ribose-2′-epimerase) enzyme revealed noteworthy information on the plausible binding interactions.  相似文献   

10.
In our search for new antiamoebic agents, a new series of ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives have been synthesized using the Beirut reaction. All compounds were characterized by spectroscopic techniques and elemental analysis. Antiamoebic activity was evaluated in vitro against Entamoeba histolytica strain HM1:IMSS by the microdilution method, and the structure–activity relationship was analyzed. We found that eleven quinoxaline derivatives showed greater activity than metronidazole and nitazoxanide with IC50 values in the range 1.99–0.35 μM. Compounds T-001 and T-016 shows IC50 values of 1.41 and 1.47 μM, respectively, with a value of selectivity index >60.  相似文献   

11.
Using a rational approach to the design of antifungal agents, a series of azole agents with 1,3,4-oxadiazole side chains were designed and synthesized. The results of preliminary in vitro antifungal tests with eight human pathogenic compounds showed that all of the title compounds exhibited excellent activities against all of the tested fungi except Aspergillus fumigatus. Compounds 11e and 11f were found to be the most effective, with a minimum inhibitory concentration of 0.0039 μg/mL, followed by voriconazole, which has a MIC of 0.0625 μg/mL. The 1,3,4-oxadiazole side chain is not the major contributor but plays a role in eliciting the observed antifungal activity.  相似文献   

12.
Choi KJ  Yu YG  Hahn HG  Choi JD  Yoon MY 《FEBS letters》2005,579(21):4903-4910
Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate- (ThDP-) and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids such as leucine, isoleucine, and valine. The genes of AHAS from Mycobacterium tuberculosis were cloned, and overexpressed in E. coli and purified to homogeneity. The purified AHAS from M. tuberculosis is effectively inhibited by pyrazosulfuron ethyl (PSE), an inhibitor of plant AHAS enzyme, with the IC(50) (inhibitory concentration 50%) of 0.87 microM. The kinetic parameters of M. tuberculosis AHAS were determined, and an enzyme activity assay system using 96-well microplate was designed. After screening of a chemical library composed of 5600 compounds using the assay system, a new class of AHAS inhibitor was identified with the IC(50) in the range of 1.8-2.6 microM. One of the identified compounds (KHG20612) further showed growth inhibition activity against various strains of M. tuberculosis. The correlation of the inhibitory activity of the identified compound against AHAS to the cell growth inhibition activity suggested that AHAS might be served as a target protein for the development of novel anti-tuberculosis therapeutics.  相似文献   

13.
Zhong Z  Xing R  Liu S  Wang L  Cai S  Li P 《Carbohydrate research》2008,343(3):566-570
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E. coli was 15.62 and 62.49 microg/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50-500 microg/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity.  相似文献   

14.
Novel 3′-N-tert-butylsulfonyl analogues 10ac of docetaxel were synthesized and their biological evaluation in cytotoxicity in vitro against several human tumor cell lines were presented. The biologically tested results showed that N-oxide pyridyl substituted10bc had potent cytotoxicities against human tumor cell lines Eca-109, SKOV3, SMMC-7721, HCT-8, PC3, MCF-7, HeLa and KB.  相似文献   

15.
1,4-Dihydropyridines are the emerging class of antitubercular agent. Recently, studies have revealed that 1,4-dihydropyridine-3,5-dicarbamoyl derivatives with lipophilic groups have demonstrated excellent antitubercular activity. We have synthesized new N-aryl-1,4-dihydropyridines bearing carbethoxy and acetyl group at C-3 and C-5 of the DHP ring. In addition, 1H-pyrazole ring is substituted at C-4 position. The lowest minimum inhibitory concentration value, 0.02 μg/mL, was found for diethyl 1-(2-chlorophenyl)-1,4-dihydro-2,6-dimethyl-4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine-3,5-dicarboxylate 4e making it more potent than first line antitubercular drug isoniazid. In addition, this compound exhibited relatively low cytotoxicity.  相似文献   

16.
Chiral nitroimidazoles were synthesized using sugars as the chiral source. The synthesized compounds showed promising antimycobacterial property with MIC value in the range 6.25–12.5 μg/mL against Mycobacterium tuberculosis H37Rv.  相似文献   

17.
Three series of salicylanilides, esters of N-phenylsalicylamides and 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides, in total thirty target compounds were synthesized and characterized. The compounds were evaluated against seven bacterial and three mycobacterial strains. The antimicrobial activities of some compounds were comparable or higher than the standards ampicillin, ciprofloxacin or isoniazid. Derivatives 3f demonstrated high biological activity against Staphylococcus aureus (?0.03 μmol/L), Mycobacterium marinum (?0.40 μmol/L) and Mycobacterium kansasii (1.58 μmol/L), 3g shows activity against Clostridium perfringens (?0.03 μmol/L) and Bacillus cereus (0.09 μmol/L), 3h against Pasteurella multocida (?0.03 μmol/L) and M. kansasii (?0.43 μmol/L), 3i against methicillin-resistant S. aureus and B. cereus (?0.03 μmol/L). The structure–activity relationships are discussed for all the compounds.  相似文献   

18.
A series of novel 11-O-aralkylcarbamoyl-3-O-descladinosylclarithromycin derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed potent activity against erythromycin-susceptible S. pyogenes, erythromycin-resistant S. pneumoniae A22072 expressing the mef gene and S. pneumoniae AB11 expressing the mef and erm genes. Besides, most of the target compounds exhibited moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372. In particular, compounds 11a, 11b, 11c, 11e, 11f and 11h were found to exert favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.015–0.125?μg/mL. Furthermore, compounds 10e, 11a, 11b and 11c showed superior activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.25–0.5?μg/mL. Additionally, compound 11c was the most effective against all the erythromycin-resistant S. pneumoniae strains (A22072, B1 and AB11), exhibiting 8-, 8- and 32-fold more potent activity than clarithromycin, respectively.  相似文献   

19.
We report herein the design and synthesis of novel 7-(4-alkoxyimino-3-aminomethylpiperidin-1-yl) fluoroquinolone derivatives. The antibacterial activity of the newly synthesized compounds was evaluated and compared with gemifloxacin, levofloxacin and ciprofloxacin. Results reveal that compounds 10, 16, and 17 have good activity against all of the tested Gram-positive organisms including drug-resistance strains (MICs: 0.125-4 μg/mL). In addition, compounds 16 and 17 (MICs: 4 μg/mL) were 2- to 8-fold more potent than the reference drugs against Pseudomonas aeruginosa.  相似文献   

20.
A series of six new amidoalcohols was designed and synthesized on the base of the camphor scaffold. Natural amino acids were transformed into their α-hydroxy analogues with retention of configuration, and attached to isobornylamine. The compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. Some of the new compounds show 25 times higher activity than the classical anti-TB drug ethambutol. The activity shifts from micromolar to nanomolar inhibitory concentrations depending on the α-hydroxy acid moiety. Two of the most potent compounds exert low level of cytotoxic activity. These camphane-based amido-alcohols present promising potential lead compounds for further elaboration of antimycobacterial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号