首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogeographic genomics, based on multiple complete mtDNA genome sequences from within individual vertebrate species, provides highly-resolved intraspecific trees for the detailed study of evolutionary biology. We describe new biogeographic and historical insights from our studies of the genomes of codfish, wolffish, and harp seal populations in the Northwest Atlantic, and from the descendants of the founding human population of Newfoundland. Population genomics by conventional sequencing methods remains laborious. A new biotechnology, iterative DNA “re-sequencing”, uses a DNA microarray to recover 30–300 kb of contiguous DNA sequence in a single experiment. Experiments with a single-species mtDNA microarray show that the method is accurate and efficient, and sufficiently species-specific to discriminate mtDNA genomes of moderately-divergent taxa. Experiments with a multi-species DNA microarray (the “ArkChip”) show that simultaneous sequencing of species in different orders and classes detects SNPs within each taxon with equal accuracy as single-species-specific experiments. Iterative DNA sequencing offers a practical method for high-throughput biodiversity genomics that will enable standardized, coordinated investigation of multiple species of interest to Species at Risk and conservation biologists.  相似文献   

2.
SNP-specific extraction of haplotype-resolved targeted genomic regions   总被引:1,自引:0,他引:1  
The availability of genotyping platforms for comprehensive genetic analysis of complex traits has resulted in a plethora of studies reporting the association of specific single-nucleotide polymorphisms (SNPs) with common diseases or drug responses. However, detailed genetic analysis of these associated regions that would correlate particular polymorphisms to phenotypes has lagged. This is primarily due to the lack of technologies that provide additional sequence information about genomic regions surrounding specific SNPs, preferably in haploid form. Enrichment methods for resequencing should have the specificity to provide DNA linked to SNPs of interest with sufficient quality to be used in a cost-effective and high-throughput manner. We describe a simple, automated method of targeting specific sequences of genomic DNA that can directly be used in downstream applications. The method isolates haploid chromosomal regions flanking targeted SNPs by hybridizing and enzymatically elongating oligonucleotides with biotinylated nucleotides based on their selective binding to unique sequence elements that differentiate one allele from any other differing sequence. The targeted genomic region is captured by streptavidin-coated magnetic particles and analyzed by standard genotyping, sequencing or microarray analysis. We applied this technology to determine contiguous molecular haplotypes across a ~150 kb genomic region of the major histocompatibility complex.  相似文献   

3.
Multiple hybridization-extension sequencing (MHES) on microarray   总被引:1,自引:0,他引:1  
Pan Z  Li Y  Xiao P  Lu Z 《Journal of biochemistry》2007,142(5):605-611
Sequencing-by-synthesis (SBS) by fluorescein-labelled nucleotide incorporating into a target DNA template has been greatly concerned on microarray. The extended fluorophore-base must be required to be quenched prior to sequencing the next one. However, the low quenching efficiency has been an obstacle in length-read. Here, we present a new sequencing strategy, multiple hybridization-extension sequencing (MHES), to resolve the above problem. First, the sequencing primers hybridize to the ssDNA template immobilized on microarray. The first 3-5 bases next to the primer's end are sequenced by SBS of Cy5-dNTP. The extended primers are rapidly removed by lambda DNA exonuclease. Then, the same primers hybridize to the same ssDNA templates again. The sequenced bases are polished by natural dNTP. The other 3-5 bases next to the polished primer's end are sequenced. According to this principle, the unknown sequences of a target DNA could be sequenced after primers' hybridization-extension multiple times. Although the fluorescein-labelled nucleotides are also needed, it is unnecessary to quench the fluorophore-bases in the process of sequencing. It has been successfully demonstrated that 10 bp fragment from synthetic template and 10 bp fragment from DTBNP1 gene were accurately sequenced. The new method has a great potential in read-length and high-throughput sequencing on microarray.  相似文献   

4.
We describe an approach for targeted genome resequencing, called oligonucleotide-selective sequencing (OS-Seq), in which we modify the immobilized lawn of oligonucleotide primers of a next-generation DNA sequencer to function as both a capture and sequencing substrate. We apply OS-Seq to resequence the exons of either 10 or 344 cancer genes from human DNA samples. In our assessment of capture performance, >87% of the captured sequence originated from the intended target region with sequencing coverage falling within a tenfold range for a majority of all targets. Single nucleotide variants (SNVs) called from OS-Seq data agreed with >95% of variants obtained from whole-genome sequencing of the same individual. We also demonstrate mutation discovery from a colorectal cancer tumor sample matched with normal tissue. Overall, we show the robust performance and utility of OS-Seq for the resequencing analysis of human germline and cancer genomes.  相似文献   

5.
Pyrosequencing, a nonelectrophoretic DNA sequencing method that uses a luciferase-based enzymatic system to monitor DNA synthesis in real time, has so far been limited to sequencing of short stretches of DNA. To increase the signal-to-noise ratio in pyrosequencing the natural dATP was replaced by dATPalphaS (M. Ronaghi et al., 1996, Anal. Biochem. 242, 84-89). The applied dATPalphaS was a mixture of two isomers (Sp and Rp). We show here that by the introduction of pure 2'-deoxyadenosine-5'-O'-(1-thiotriphosphate) Sp-isomer in pyrosequencing substantial longer reads could be obtained. The pure Sp-isomer allowed lower nucleotide concentration to be used and improved the possibility to read through poly(T) regions. In general, a doubling of the read length could be obtained by the use of pure Sp-isomer. Pyrosequencing data for 50 to 100 bases could be generated on different types of template. The longer read will enable numerous new applications, such as identification and typing of medically important microorganisms as well as resequencing of DNA fragments for mutation screening and clone checking.  相似文献   

6.
Targeted resequencing technologies have allowed for efficient and cost-effective detection of genomic variants in specific regions of interest. Although capture sequencing has been primarily used for investigating single nucleotide variants and indels, it has the potential to elucidate a broader spectrum of genetic variation, including copy number variants (CNVs). Various methods exist for detecting CNV in whole-genome and exome sequencing datasets. However, no algorithms have been specifically designed for contiguous target sequencing, despite its increasing importance in clinical and research applications. We have developed cnvCapSeq, a novel method for accurate and sensitive CNV discovery and genotyping in long-range targeted resequencing. cnvCapSeq was benchmarked using a simulated contiguous capture sequencing dataset comprising 21 genomic loci of various lengths. cnvCapSeq was shown to outperform the best existing exome CNV method by a wide margin both in terms of sensitivity (92.0 versus 48.3%) and specificity (99.8 versus 70.5%). We also applied cnvCapSeq to a real capture sequencing cohort comprising a contiguous 358 kb region that contains the Complement Factor H gene cluster. In this dataset, cnvCapSeq identified 41 samples with CNV, including two with duplications, with a genotyping accuracy of 99%, as ascertained by quantitative real-time PCR.  相似文献   

7.
We describe a new DNA sequencing method called sequencing by denaturation (SBD). A Sanger dideoxy sequencing reaction is performed on the templates on a solid surface to generate a ladder of DNA fragments randomly terminated by fluorescently labeled dideoxyribonucleotides. The labeled DNA fragments are sequentially denatured from the templates and the process is monitored by measuring the change in fluorescence intensities from the surface. By analyzing the denaturation profiles, the base sequence of the template can be determined. Using thermodynamic principles, we simulated the denaturation profiles of a series of oligonucleotides ranging from 12 to 32 bases and developed a base-calling algorithm to decode the sequences. These simulations demonstrate that DNA molecules up to 20 bases can be sequenced by SBD. Experimental measurements of the melting profiles of DNA fragments in solution confirm that DNA sequences can be determined by SBD. The potential limitations and advantages of SBD are discussed. With SBD, millions of sequencing reactions can be performed on a small area on a surface in parallel with a very small amount of sequencing reagents. Therefore, DNA sequencing by SBD could potentially result in a significant increase in speed and reduction in cost in large-scale genome resequencing.  相似文献   

8.
DNA sequencing by hybridization using semi-degenerate bases.   总被引:1,自引:0,他引:1  
One way to enhance the performance of hybridization microarrrays for DNA de novo sequencing is the use of probing patterns with gaps of unsampled positions. Ideally, such gaps could be realized by the inclusion into microarray oligos (probes) of wild-card compounds, referred to as universal bases (which bind nonspecifically to natural bases). The suggested alternative is to deploy in the gap positions degenerate bases, i.e., uniform mixtures of the four natural bases, with ensuing deterioration of the hybridization signal. In this paper, we show that such signal loss is a minor shortcoming, compared with the fact that degenerate bases cannot be treated as universal. Indeed, the substantial spread of hybridization energies at any microarray feature is such that on overwhelming number of mismatches bind more strongly than legal matches. We observed, however, that much narrower energy spreads are exhibited by pairs of bases in the same strength class (A-T and C-G). We call semi-degenerate a gap position realized with bases in the same energy class and show that well-known sequence reconstruction algorithms can be modified to achieve substantial improvements in sequencing effectiveness. For example, with a 4(9)-feature microarray and an acceptable weakening of the hybridization signal, one may achieve lengths of about 4,000 bases (compared with < 250 of the standard uniform method). Our approach also incorporates the use of a spectrum expressed in terms of observed feature melting temperatures (analog spectrum), rather than binary decisions made directly at the biochemical level (digital spectrum). While universal bases represent the ultimate goal of sequencing by hybridization, semidegenerate natural bases are the most effective known substitute.  相似文献   

9.
10.
11.
The efficiency of sequencing by hybridization to an oligonucleotide microchip grows with an increase in the number and in the length of the oligonucleotides; however, such increases raise enormously the complexity of the microchip and decrease the accuracy of hybridization. We have been developing the technique of contiguous stacking hybridization (CSH) to circumvent these shortcomings. Stacking interactions between adjacent bases of two oligonucleotides stabilize their contiguous duplex with DNA. The use of such stacking increases the effective length of microchip oligonucleotides, enhances sequencing accuracy and allows the sequencing of longer DNA. The effects of mismatches, base composition, length and other factors on the stacking are evaluated. Contiguous stacking hybridization of DNA with immobilized 8mers and one or two 5mers labeled with two different fluorescent dyes increases the effective length of sequencing oligonucleotides from 8 to 13 and 18 bases, respectively. The incorporation of all four bases or 5-nitroindole as a universal base into different positions of the 5mers permitted a decrease in the number of additional rounds of hybridization. Contiguous stacking hybridization appears to be a promising approach to significantly increasing the efficiency of sequencing by hybridization.  相似文献   

12.
To exceed the throughput and accuracy of conventional sequencing technologies, we tested a method (pyrophosphorolysis-activated polymerization [PAP]) of nucleic acid amplification that uses 3' blocked primers (P*s). As proof-of-principle, we resequenced a 20-bp region of the factor IX gene with a microarray of P*s. P*s discriminate 3' end mismatches with ultra-high specificity as well as mismatches along their lengths with high specificity. We correctly identified two wild-type samples as well as all mismatches, including three single-base substitutions, one microdeletion, one microinsertion, and one heterozygous mutation. Despite limitations in the primer purity, the signal/noise ratio between the matched and mismatched P*s sometimes exceeded 1000. Thus, PAP resequencing shows great potential for accurate and high-throughput microarray-based resequencing.  相似文献   

13.
Genome sequencing is becoming cheaper and faster thanks to the introduction of next-generation sequencing techniques. Dozens of new plant genome sequences have been released in recent years, ranging from small to gigantic repeat-rich or polyploid genomes. Most genome projects have a dual purpose: delivering a contiguous, complete genome assembly and creating a full catalog of correctly predicted genes. Frequently, the completeness of a species’ gene catalog is measured using a set of marker genes that are expected to be present. This expectation can be defined along an evolutionary gradient, ranging from highly conserved genes to species-specific genes. Large-scale population resequencing studies have revealed that gene space is fairly variable even between closely related individuals, which limits the definition of the expected gene space, and, consequently, the accuracy of estimates used to assess genome and gene space completeness. We argue that, based on the desired applications of a genome sequencing project, different completeness scores for the genome assembly and/or gene space should be determined. Using examples from several dicot and monocot genomes, we outline some pitfalls and recommendations regarding methods to estimate completeness during different steps of genome assembly and annotation.  相似文献   

14.
15.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Finally, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.  相似文献   

16.
We have developed a new method for typing single nucleotide polymorphisms (SNPs), MagSNiPer, based on single base extension, magnetic separation, and chemiluminescence. Single base nucleotide extension reaction is performed with a biotinylated primer whose 3' terminus is contiguous to the SNP site with a tag-labeled ddNTP. Then the primers are captured by magnetic-coated beads with streptavidin, and unincorporated labeled ddNTP is removed by magnetic separation. The magnetic beads are incubated with anti-tag antibody conjugated with alkaline phosphatase. After the removal of excess conjugates by magnetic separation, SNP typing is performed by measuring chemiluminescence. The incorporation of labeled ddNTP is monitored by chemiluminescence induced by alkaline phosphatase. MagSNiPer is a simple and robust SNP typing method with a wide dynamic range and high sensitivity. Using MagSNiPer, we could perform SNP typing with as little as 10(-17) mol of template DNA.  相似文献   

17.
Over the last few years, an essential RNA structure known as the cis-acting replicative element (cre) has been identified within the protein-coding region of several picornaviruses. The cre, a stem-loop structure containing a conserved AAACA motif, functions as a template for addition of U residues to the protein primer 3B. By surveying the genomes of representatives of several serotypes of foot-and-mouth disease virus (FMDV), we discovered a putative cre in the 5' untranslated region of the genome (contiguous with the internal ribosome entry site [IRES]). To confirm the role of this putative cre in replication, we tested the importance of the AAACA motif and base pairing in the stem in FMDV genome replication. To this end, cre mutations were cloned into an FMDV replicon and into synthetic viral genomes. Analyses of the properties of these replicons and genomes revealed the following. (i) Mutations in the AAACA motif severely reduced replication, and all viruses recovered from genomes containing mutated AAACA sequences had reverted to the wild-type sequence. (ii) Mutations in the stem region showed that the ability to form this base-paired structure was important for replication. Although the cre was contiguous with the IRES, the mutations we created did not significantly reduce IRES-mediated translation in vivo. Finally, the position of the cre at the 5' end of the genome was shown not to be critical for replication, since functional replicons and viruses lacking the 5' cre could be obtained if a wild-type cre was added to the genome following the 3D(pol) coding region. Taken together, these results support the importance of the cre in replication and demonstrate that the activity of this essential element does not require localization within the polyprotein-encoding region of the genome.  相似文献   

18.
Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.Pacific Biosciences'' single molecule, real-time sequencing technology, SMRT, is one of several next-generation sequencing technologies that are currently in use. In the past, it has been somewhat overlooked because of its lower throughput compared with methods such as Illumina and Ion Torrent, and because of persistent rumors that it is inaccurate. Here, we seek to dispel these misconceptions and show that SMRT is indeed a highly accurate method with many advantages when used to sequence small genomes, including the possibility of facile closure of bacterial genomes without additional experimentation. We also highlight its value in being able to detect modified bases in DNA.  相似文献   

19.
The advantages of SMRT sequencing   总被引:1,自引:0,他引:1  
Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.Pacific Biosciences'' single molecule, real-time sequencing technology, SMRT, is one of several next-generation sequencing technologies that are currently in use. In the past, it has been somewhat overlooked because of its lower throughput compared with methods such as Illumina and Ion Torrent, and because of persistent rumors that it is inaccurate. Here, we seek to dispel these misconceptions and show that SMRT is indeed a highly accurate method with many advantages when used to sequence small genomes, including the possibility of facile closure of bacterial genomes without additional experimentation. We also highlight its value in being able to detect modified bases in DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号