首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
类伸展蛋白(Leucine-Rich Repeats Extensins,LRX)是一类细胞壁嵌合蛋白,其N端包含一个LRR(leucine-rich repeats)结构域,C端含Extensins结构域。研究表明,LRX基因家族在拟南芥(Arabidopsis thaliana)花粉萌发和花粉管生长过程中具有重要作用,而水稻(Oryza sativa L.) LRX基因家族是否在调控花粉发育方面具有保守的生物学功能尚不清楚。本研究首先进行了生物信息学分析,结果显示,水稻LRX基因家族包括8个成员,OsPEX3、OsLRX3、OsLRX5位于水稻第1号染色体;OsLRX1、OsLRX3、OsLRX2、OsPEX1和OsPEX2分别位于第2、第5、第6、第11和第12号染色体,其中OsPEX1基因在花粉中高表达,暗示OsPEX1可能参与了花粉发育调控。为此,本研究采用RNAi技术进一步研究了OsPEX1基因对花粉发育的影响。结果表明,OsPEX1基因的RNAi转基因植株花粉败育,结实率仅为10%-30%。qRT-PCR分析显示,这些RNAi转基因植株OsPEX1基因表达量显著低于野生型...  相似文献   

3.
4.
Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.  相似文献   

5.
Using the rice PEX14 cDNA as a bait in a yeast two-hybrid assay, two splice variants of the type I peroxisomal targeting signal (PTS1) receptor, OsPex5pL and OsPex5pS, were cloned from a pathogen-treated rice leaf cDNA library. The proteins were produced from a single gene by alternative splicing, which generated a full-length variant, OsPEX5L, and a variant that lacked exon 7, OsPEX5S. OsPex5pL contained 11 copies of the pentapeptide motif WXXXF/Y in its N-terminus, and seven tetratricopeptide repeats in its C-terminus. Expression of OsPEX5L and OsPEX5S predominantly occurred in leaf tissues, and was induced by various stresses, such as exposure to the pathogen Magnaporthe grisea, and treatment with fungal elicitor, methyl viologen, NaCl or hydrogen peroxide. The Arabidopsis T-DNA insertional pex5 mutant, Atpex5, which does not germinate in the absence of sucrose and was resistant to indole-3-butyric acid (IBA), was perfectly rescued by over-expression of OsPex5pL, but not by OsPex5pS. Using transient expression of OsPex5pL and OsPex5pS in the Atpex5 mutant, we show that OsPex5pL translocates both PTS1- and PTS2-containing proteins into the peroxisome by interacting with OsPex7p, whereas OsPex5pS is involved only in PTS1-dependent import in Arabidopsis.  相似文献   

6.
7.
8.

Cinnamyl alcohol dehydrogenase (CAD) is the enzyme in the last step of lignin biosynthetic pathway and is involved in the generation of lignin monomers. IbCAD1 gene in sweetpotato (Ipomoea batatas) was identified, and its expression was induced by abiotic stresses based on promoter analysis. In this study, transgenic Arabidopsis plants overexpressing IbCAD1 directed by CaMV 35S promoter were developed to determine the physiological function of IbCAD1. IbCAD1-overexpressing transgenic plants exhibited better plant growth and higher biomass compared to wild type (WT), under normal growth conditions. CAD activity was increased in leaves and roots of transgenic plants. Sinapyl alcohol dehydrogenase activity was induced to a high level in roots, which suggests that IbCAD1 may regulate biosynthesis of syringyl-type (S) lignin. Lignin content was increased in stems and roots of transgenic plants; this increase was in S lignin rather than guaiacyl (G) lignin. Overexpression of IbCAD1 in Arabidopsis resulted in enhanced seed germination rates and tolerance to reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). Taken together, our results show that IbCAD1 controls lignin content by biosynthesizing S units and plays an important role in plant responses to oxidative stress.

  相似文献   

9.
10.
Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss‐of‐function osmdh1 mutant displaying salt stress‐tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1‐GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress‐sensitive phenotype. Liquid chromatography–mass spectrometry (LC‐MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress‐induced pyridoxine accumulation. Furthermore, genome‐wide RNA‐sequencing (RNA‐seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.  相似文献   

11.
12.
We previously observed decreased expression of rice OsmiR159a.1 on infection with the bacterial blight-causing pathogen Xanthomonas oryzae pv. oryzae (Xoo), and identified the OsLRR_RLK (leucine-rich repeat_ receptor like kinase) gene as an authentic target of OsmiR159a.1. Here, we found that a Tos17 insertion mutant of LRR_RLK displayed increasing temporal resistance to Xoo, whereas the LRR_RLK overexpression lines were susceptible to the pathogen early on in the infection, indicating that LRR_RLK encodes a repressor of rice resistance to Xoo infection, and it was renamed as RIR1 (Rice Immunity Repressor 1). RIR1 overexpression plants were more susceptible to Xoo at late growth stage, suggesting that RIR1 mRNA levels are negatively correlated with the resistance of rice against Xoo. We discovered that OsmiR159a.1 repression in Xoo-infected plants was largely dependent on the pathogen's type III secretion system. Co-immunoprecipitation, bimolecular fluoresence complementation, and pull-down assays indicated that RIR1 interacted with the NADH-ubiquinone oxidoreductase (NUO) 51-kDa subunit of the mitochondrial complex I through its kinase domain. Notably, impairment of RIR1 or overexpression of NUO resulted in reactive oxygen species accumulation and enhanced expression of pathogen-resistance genes, including jasmonic acid pathway genes. We propose that pathogens may inhibit OsmiR159 to interfere with the RIR1–NUO interaction, and subsequently depression of rice immune signalling pathways. The resistance genes manipulated by Xoo can be a probe to explore the regulatory network during host–pathogen interactions.  相似文献   

13.
14.
Both polysaccharide-linked hydroxycinnamoyl esters (PHEs) and lignin are biosynthesized via the phenylpropanoid pathway. In the abnormal internode parenchyma of the rice (Oryza sativa L.) mutant Fukei 71, which has a defective recessive gene (d50), the biosynthesis of lignin and PHEs differs. . The polysaccharide-linked ferulate and p-coumarate have been shown to accumulate to high levels in the irregularly shaped and collapsed internode parenchyma cells of Fukei 71 without an accompanying overaccumulation of lignin as a result of the defective d50 gene. In the present study we demonstrated that in this abnormal parenchyma tissue of Fukei 71 the expression of phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS) were ectopically induced with the ectopic accumulation of PHEs, suggesting that the d50 gene may play a role as a controlling element in the biosynthesis of PHEs during cell-wall formation in the grasses.  相似文献   

15.
To understand the lodging behavior in kodo millet (Paspalum scrobiculatum L.) at morphological, biochemical, and molecular levels, 22 germplasm accessions selected based on previous trials were characterized for culm strength-related morphological traits such as pulling force, culm weight per unit length, culm diameter, recovery angle after bending and degree of lodging, and biochemical traits such as cellulose, hemicellulose, and lignin content of the culm. Correlation among traits and path analysis with degree of lodging showed that only lignin content per unit length of the culm had a very high negative effect on degree of lodging, followed by culm diameter, which means that higher the lignin content and culm diameter, the lesser will be the degree of lodging. Hence, it was concluded that any improvement for lodging resistance in kodo millet can be achieved through improving the lignin content (mg/cm of the dry culm) and culm diameter. Gene expression studies in kodo millet for FLEXIBLE CULM 1 (FC1), a gene implicated in lignin biosynthetic pathway and lodging resistance in rice, suggests the role of FC1 gene ortholog in lignin accumulation in kodo millet as well. Accordingly, the highest gene expression was recorded in strong culm line “Adari” a land race and the lowest expression in “Aamo 10,” a weak culm line.  相似文献   

16.
17.
18.
19.
20.
Lignin is closely related to the lodging resistance of common buckwheat (Fagopyrum esculentum Moench.). However, the characteristics of lignin synthesis related genes have not yet been reported. We investigated the lignin biosynthesis gene expression, activities of related enzymes, and accumulation of lignin monomers during branching stage, bloom stage, and milky ripe stage by real-time quantitative PCR, UVspectrophotometry, and gas chromatography-mass spectrometry in the 2nd internode of three common buckwheat cultivars with different lodging resistance. The results showed that lignin content and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) were closely related to the lodging resistance of common buckwheat. Further, we studied gene expression of cinnamate 4-hydroxylase (C4H), caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), cinnamoyl-CoA reductase (CCR), and caffeic acid O-methyltransferase (COMT). The lignin biosynthesis genes were divided into three classes according to their expression pattern: 1) expression firstly increasing and then descending (PAL, 4CL, CAD, C4H, CCoAOMT, F5H, and CCR), 2) expression remaining constant during maturation (C3H), and 3) expression decreasing with maturation (COMT). The present study provides preliminary insights into the expression of lignin biosynthesis genes in common buckwheat, laying a foundation for further understanding the lignin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号