首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A group of styrylquinolines were synthesized and tested for their anti-proliferative activity. Anti-proliferative activity was evaluated against the human colon carcinoma cell lines that had a normal expression of the p53 protein (HCT116 p53+/+) and mutants with a disabled TP53 gene (HCT116 p53-/-) and against the GM 07492 normal human fibroblast cell line. A SAR study revealed the importance of Cl and OH as substituents in the styryl moiety. Several of the compounds that were tested were found to have a marked anti-proliferative activity that was similar to or better than doxorubicin and were more active against the p53 null than the wild type cells. The cellular localization tests and caspase activity assays suggest a mechanism of action through the mitochondrial pathway of apoptosis in a p53-independent manner. The activity of the styrylquinoline compounds may be associated with their DNA intercalating ability.  相似文献   

2.
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53+/+ and HCT116p53−/− colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53+/+ and HCT116p53−/− cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. This work was supported by the U.S. Air Force Office of Scientific Research/DOD MURI grant on Subcellular Responses to Narrow Band and Wide Band Radio Frequency Radiation, administered by Old Dominion University, and the American Cancer Society.  相似文献   

3.
4.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

5.
The oncoprotein MDM2 (murine double minute 2) is often overexpressed in human tumors and thereby attenuates the function of the tumor suppressor p53. In this study, we investigated the effects of the novel MDM2-inhibitor PXN727 on p53 activation, cell proliferation, cell cycle distribution and radiosensitivity. Since the localization of heat shock protein 70 (Hsp70) exerts different effects on radioresistance of tumor cells, we investigated the impact of PXN727 on intracellular, membrane, and secreted Hsp70 levels. We could show that PXN727 exerts its effects on wildtype p53 (HCT116 p53+/+, A549) but not p53 depleted (HCT116 p53−/−) or mutated (FaDu) tumor cells. PXN727 activates p53, induces the expression of p21, reduces the proportion of cells in the radioresistant S-phase and induces senescence. Radiosensitivity was significantly increased by PXN727 in HCT116 p53+/+ tumor cells. Furthermore, PXN727 causes a downregulation of Hsp70 membrane expression and an upregulated secretion of Hsp70 in wildtype p53 tumor cells. Our data suggest that re-activation of p53 by MDM2-inhibition modulates Hsp70 membrane expression and secretion which might contribute to the radiosensitizing effect of the MDM2-inhibitor PXN727.  相似文献   

6.
The present study was designed to investigate the anticancer activity of novel nine small peptides (compounds 19) derived from TT-232, a somatostatin structural analogue, by analyzing the inhibition of mammalian DNA polymerase (pol) and human cancer cell growth. Among the compounds tested, compounds 3 [tert-butyloxycarbonyl (Boc)-Tyr-Phe-1-naphthylamide], 4 (Boc-Tyr-Ile-1-naphthylamide), 5 (Boc-Tyr-Leu-1-naphthylamide) and 6 (Boc-Tyr-Val-1-naphthylamide) containing tyrosine (Tyr) but no carboxyl groups, selectively inhibited the activity of rat pol β, which is a DNA repair-related pol. Compounds 36 strongly inhibited the growth of human colon carcinoma HCT116 p53+/+ cells. The influence of compounds 19 on HCT116 p53?/? cell growth was similar to that observed for HCT116 p53+/+ cells. These results suggest that the cancer cell growth suppression induced by these compounds might be related to their inhibition of pol. Compound 4 was the strongest inhibitor of pol β and cancer cell growth among the nine compounds tested. This compound specifically inhibited rat pol β activity, but had no effect on the other 10 mammalian pols investigated. Compound 4 combined with methyl methane sulfonate (MMS) treatment synergistically suppressed HCT116 p53?/? cell growth compared with MMS alone. This compound also induced apoptosis in HCT116 cells with or without p53. From these results, the influence of compound 4, a specific pol β inhibitor, on the relationship between DNA repair and cancer cell growth is discussed.  相似文献   

7.
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53+/+ cells, whereas HCT116 p53−/− cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53+/+ or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53−/− cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.  相似文献   

8.
Identifying effective small molecules that specifically target the p53 pathway in cancer has been an exciting, though challenging, approach for the development of anti-cancer therapy. We recently identified Inauhzin (INZ) as a novel p53 activator, selectively and efficiently suppressing tumor growth without displaying genotoxicity and with little toxicity to normal cells. In order to reveal the structural features essential for anti-cancer activity of this small molecule, we have synthesized a panel of INZ analogs and evaluated their ability to induce cellular p53 and to inhibit cell growth in cell-based assays. This study as described here leads to the discovery of INZ analog 37 that displays much better potency than INZ in both of p53 activation and cell growth inhibition in several human cancer cell lines including H460 and HCT116+/+ cells. This INZ analog exhibited much less effect on p53-null H1299 cells and HCT116−/− cells, and importantly no toxicity on normal human p53-containing WI-38 cells. Hence, our results not only unveil key chemical features for INZ activity, but also identify the newly synthesized INZ analog 37 as a better small molecule for further development of anti-cancer therapy.  相似文献   

9.
10.
11.

Background and Purpose

To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.

Materials and Methods

DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.

Results

The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation.

Conclusions

Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.  相似文献   

12.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

13.
In this study, we determined whether p53 expression affected the sensitivity of non–small cell lung cancer (NSCLC) and colon cancer cells to bleomycin (BLM). Two human NSCLC cell lines (A549 expressing wild‐type p53 and p53‐null H1299) and two colon cancer cell lines (HCT116 p53+/+ and its p53 deficient subline HCT116 p53?/?) were subjected to treatment with BLM. Cells were treated with various concentrations of BLM, and cellular viability was assessed by formazan assay. To investigate the role of p53 in BLM sensitivity, we transduced cells with adenovirus with wild‐type p53, dominant‐negative p53, and GFP control, and analyzed the effect on cellular viability. Cells expressing wild‐type p53 were more sensitive to BLM than p53‐null cells in both NSCLC and colon cancer cells. Sensitivity to BLM of the cells with wild‐type p53 was reduced by overexpression of dominant‐negative p53, while BLM sensitivity of p53‐null cells was increased by wild‐type p53 in both NSCLC cells and colon cancer cells. In conclusion, our data show that p53 sensitizes all four cancer cells lines tested to BLM toxicity and overexpression of p53 confers sensitivity to the cytotoxic activity of the anticancer agent in p53‐null cells. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:260–269, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20334  相似文献   

14.
Triad 1 (2 RING [really interesting new gene] fingers and DRIL [double RING finger linked] 1) is an E3 ligase that induces apoptosis and clonogenic inhibition in myeloid cells through Gfi-1 stabilization. Here we demonstrate that Triad 1 induces apoptosis in several cancer cell lines including MCF7, A549, U2OS, and HCT 116 p53+/+ cells via its RING ligase activity. Interestingly, in these cancer cells, Triad 1-induced apoptosis is not mediated by Gfi-1 stabilization but is instead p53-dependent. Moreover, Triad 1 promotes transactivation of p53. These results suggest that Triad 1 can induce apoptosis through its ligase activity via p53 activation.  相似文献   

15.
16.
A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.  相似文献   

17.
Owing to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none have been identified that traffic copper to the nucleus. Copper-64 decays by β + and β ? emission, allowing positron emission tomography and targeted radionuclide therapy for cancer. Because the delivery of 64Cu to the cell nucleus may enhance the therapeutic effect of copper radiopharmaceuticals, elucidation of the pathway(s) involved in transporting copper to the tumor cell nucleus is important for optimizing treatment. We identified Atox1 as one of the proteins that binds copper in the nucleus. Mouse embryonic fibroblast cells, positive and negative for Atox1, were used to determine the role of Atox1 in 64Cu transport to the nucleus. Mouse embryonic fibroblast Atox1+/+ cells accumulated more 64Cu in the nucleus than did Atox1?/? cells. HCT 116 colorectal cancer cells expressing p53 (+/+) and not expressing p53 (?/?) were used to evaluate the role of this tumor suppressor protein in 64Cu transport. In cells treated with cisplatin, the uptake of 64Cu in the nucleus of HCT 116 p53+/+ cells was greater than that in HCT 116 p53?/? cells. Atox1 expression increased in HCT 116 p53+/+ and p53?/? cells treated with cisplatin; however, Atox1 localized to the nuclei of p53+/+ cells more than in the p53?/? cells. The data presented here indicate that Atox1 is involved in copper transport to the nucleus, and cisplatin affects nuclear transport of 64Cu in HCT 116 cells by upregulating the expression and the nuclear localization of Atox1.  相似文献   

18.
《Phytomedicine》2014,21(5):682-688
IntroductionResistance of cancer cells to chemotherapy has become a worldwide concern. Naturally occuring isoflavonoids possess a variety of biological activities including anti-cancer effects. The present study was aimed at investigating the cytotoxicity and the modes of action of three naturally occuring isoflavonoids, neobavaisoflavone (1), sigmoidin H (2) and a pterocarpan that is a special type of isoflavonoid, isoneorautenol (3) against a panel of nine cancer cell lines, including various sensitive and drug-resistant phenotypes.MethodsThe cytotoxicity of the compounds was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with compounds 3. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS).ResultsCompounds 3 showed significant cytotoxicity toward sensitive and drug-resistant cancer cell lines. Compounds 1 and 2 were selectively active, and IC50 values below 115 μM were obtained on 6/9 and 4/9 cell lines respectively with values ranging from 42.93 μM (toward CCRF-CEM cells) to 114.64 μM [against HCT116 (p53+/+) cells] for 1 and 25.59 μM (toward U87MG) to 110.51 μM [against HCT116 (p53+/+) cells] for 2. IC50 values ranging from 2.67 μM (against MDA-MB 237BCRP cells) to 21.84 (toward U87MG) were measured for compound 3 and between 0.20 μM (toward CCRF-CEM cells) and 195.12 μM (toward CEM/ADR5000 cells) for doxorubicin as control drug. BCRP-transfected MDA-MB-231 cells, HCT116 (p53+/+) and U87MG.ΔEGFR cells were hypersensitive (collateral sensitive) to compound 3 as compared to their counterpart cell lines. Compound 3 induced apoptosis in CCRF-CEM cells via activation of caspases 3/7, 8 and 9 as well as the loss of MMP and increased ROS production.ConclusionsThe cytotoxicity of the studied isoflavonoids and especially the pterocarpan 3 deserve more detailed exploration in the future to develop novel anticancer drugs against sensitive and otherwise drug-resistant phenotypes.  相似文献   

19.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

20.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号