首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A naturally occurring plasmid from Bacillus subtilis, pIM13, codes for constitutively expressed macrolide-lincosamide-streptogramin B (MLS) resistance, is stably maintained at a high copy number, and exists as a series of covalent multimers. The complete sequence of pIM13 has been reported (M. Monod, C. Denoya, and D. Dubnau, J. Bacteriol. 167:138-147, 1986) and two long open reading frames have been identified, one of which (ermC') is greater than 90% homologous to the ermC MLS resistance determinant of the Staphylococcus aureus plasmid pE194. The second reading frame (repL) shares homology with the only long open reading frame of the cryptic S. aureus plasmid pSN2 and is probably involved in plasmid replication. The map of pIM13 is almost a precise match with that of pE5, a naturally occurring, stable, low-copy-number, inducible MLS resistance plasmid found in S. aureus. pIM13 is unstable in S. aureus but still multimerizes in that host, while pE5 is unstable in B. subtilis and does not form multimers in either host. The complete sequence of pE5 is presented, and comparison between pIM13 and pE5 revealed two stretches of sequence present in pE5 that were missing from pIM13. It is likely that a 107-base-pair segment in the ermC' leader region missing from pIM13 accounts for the constitutive nature of the pIM13 MLS resistance and that the lack of an additional 120-base-pair segment in pIM13 that is present on pE5 gives rise to the high copy number, stability, and multimerization in B. subtilis. The missing 120 base pairs occur at the carboxyl-terminal end of the putative replication protein coding sequence and results in truncation of that protein. It is suggested either that the missing segment contains a site involved in resolution of multimers into monomers or that the smaller replication protein causes defective termination of replication. It is concluded that pIM13 and pE5 are coancestral plasmids and it is probable that pIM13 arose from pE5.  相似文献   

2.
The complete nucleotide sequence of a naturally occurring Staphylococcus aureus plasmid, pT48 (from S. aureus strain T48), has been determined. The 2475 bp plasmid confers inducible resistance to macrolide-lincosamide-streptogramin B (MLS) type antibiotics. It is similar to the constitutive MLS resistance plasmid, pNE131, from Staphylococcus epidermidis and shows homology with S. aureus plasmids pSN2 and pE194. It contains a palA structure homologous to that on S. aureus plasmid pT181. The open reading frame, ORF B, within the pSN2 homologous region has a frameshifted C-terminus, relative to pNE131, resulting in a smaller, 158 amino acid putative polypeptide. The pE194 homologous region has the ermC resistance determinant and retains the leader region, deleted in pNE131, required for inducible expression of an adenine methylase. Another naturally occurring S. aureus strain, J74, shows constitutive resistance to erythromycin and contains a small plasmid, pJ74, which is similar to pNE131 but with a different deletion in the leader sequence. The results are consistent with the translational attenuation model for ermC expression.  相似文献   

3.
pE194 is a small plasmid (isolated originally in Staphylococcus aureus) which confers erythromycin-inducible resistance to macrolide, lincosamide, and streptogramin type B (MLS) antibiotics. The nucleotide sequence of pE194 contains 3,728 base pairs (bp), corresponding to a molecular mass of 2.4 million daltons. By means of site-specific cleavage with restriction endonucleases and cloning resultant fragments, determinants of the two major biological functions of p E194, i.e., inducible MLS resistance and replication, could be localized and assigned to specific sequences in the plasmid. Restriction endonuclease TaqI cut pE194 at three sites. TaqI fragment A (1,443 bp) contained the determinant for inducible MLS resistance, whereas TaqI fragment B (1,354 bp) contained a determinant necessary for plasmid replication. Regulatory mutations resulting in constitutive expression of MLS resistance mapped in TaqI fragment A, whereas a mutation associated with elevated plasmid copy number was mapped in TaqI fragment B. Also mapping in TaqI fragment B was a plasmid replication determinant comprising two sets of inverted complementary repeat sequences, one of which spanned 124 bp and was adjacent to a second smaller set which was rich in guanine and cytosine residues. pE194 contained six open reading frames which were theoretically capable of coding for proteins with maximum molecular masses as follows (in daltons): A, 48,300; B, 29,200; C, 14,000; D, 13,900; E, 12,600; and F, 2,700. Insertion of plasmid pBR322 into the single PstI site located in frame A of pE194 resulted in a composite plasmid which could replicate in both Bacillus subtilis and Escherichia coli, suggesting that an intact polypeptide A is dispensable for both replication of pE194 and for MLS resistance. Frame B specified inducible MLS resistance, whereas frame F specified the putative peptide associated with the proposed B determinant translational attenuator. The extent to which frames C, D, and E, all contained in TaqI fragment B, were translated into polypeptide products is not known; however, a base change in frame E was found in a comparison between the high-copy-number mutant, cop-6, and the wild-type strains.  相似文献   

4.
A naturally occurring constitutive macrolide-lincosamide-streptogramin B (MLS) resistance plasmid, pNE131, from Staphylococcus epidermidis was chosen to study the molecular basis of constitutive expression. Restriction and functional maps of pNE131 are presented along with the nucleotide sequence of ermM, the gene which mediates constitutive MLS resistance. Sharing 98% sequence homology within the 870-base-pair Sau3A-TaqI fragment, ermM appears to be almost identical to ermC, the inducible MLS resistance determinant from S. aureus (pE194). The two genes share nearly identical sequences, except in the 5' promoter region of ermM. Constitutive expression of ermM is due to the deletion of 107 base pairs relative to ermC; the deletion removes critical sequences for attenuation, resulting in constitutive methylase expression.  相似文献   

5.
Resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics is widespread and of clinical importance. B. Weisblum and his coworkers have demonstrated that this resistance is associated with methylation of the 23S ribosomal ribonucleic acid of the large ribosomal subunit which results in a diminished affinity of this organelle for these antibiotics (Lai et al, J. Mol. Biol. 74:67-72, 1973). We report that 10 of 15 natural isolates of Bacillus licheniformis, a common soil organism, are resistant to the MLS antibiotics. The properties of this resistance (high level of tolerance for erythromycin, broad cross-resistance spectrum, and inducibility) suggest that resistance is conferred as described above. The resistance determinant from one of these strains was cloned onto a B. subtilis plasmid vector, and the resulting hybrid plasmid (pBD90) was used to prepare radioactive probe deoxyribonucleic acid for hybridization studies. All of the resistance B. licheniformis strains studied exhibited homology with the pBD90 insert. Plasmid pBD90 showed no homology to the following staphylococcal and streptococcal MLS-resistance plasmids: pE194, pE5, pAM77, pI258. Plasmids pE194 and pE5, on the other hand, carry homologous MLS genes but showed no detectable homology to one another in their replication genes. pBD90 specified a 35,000-dalton erythromycin-inducible protein, detectable in minicells, which therefore appears different from the 29,000-dalton inducible resistance protein specified by pE194. We conclude that there are at least three distinct MLS resistance determinants to be found among gram-positive bacteria.  相似文献   

6.
A plasmid, pE194, obtained from Staphylococcus aureus confers resistance to macrolide, lincosamide, and streptogramin type B ("MLS") antibiotics. For full expression, the resistance phenotype requires a period of induction by subinhibitory concentrations of erythromycin. A copy number in the range of 10 to 25 copies per cell is maintained during cultivation at 32 degrees C. It is possible to transfer pE194 to Bacillus subtilis by transformation. In B. subtilis, the plasmid is maintained at a copy number of approximately 10 per cell at 37 degrees C, and resistance is inducible. Tylosin, a macrolide antibiotic which resembles erythromycin structurally and to which erythromycin induces resistance, lacks inducing activity. Two types of plasmid mutants were obtained and characterized after selection on medium containing 10 microgram of tylosin per ml. One mutant class appeared to express resistance constitutively and maintained a copy number indistinguishable from that of the parent plasmid. The other mutant type had a 5- to 10-fold-elevated plasmid copy number (i.e., 50 to 100 copies per cell) and expressed resistance inducibly. Both classes of tylosin-resistant mutants were shown to be due to alterations in the plasmid and not to modifications of the host genome.  相似文献   

7.
The complete nucleotide sequence of the Staphylococcus epidermidis plasmid pNE131 is presented. The plasmid is 2,355 base pairs long and contains two major open reading frames. A comparison of the pNE131 DNA sequence with the published DNA sequences of five Staphylococcus aureus plasmids revealed strong regional homologies with two of them, pE194 and pSN2. The region of pNE131 containing the reading frame which encodes the constitutive ermM gene is almost identical to the inducible ermC gene region of pE194, except for a 107-base-pair deletion which removes the mRNA leader sequence required for inducible expression. A second region of pNE131 contains an open reading frame with homology to the small cryptic plasmid pSN2 and potentially encodes a 162-amino-acid protein.  相似文献   

8.
Plasmid pBD9, which comprises two plasmids from Staphylococcus aureus, pE194 and pUB110, was joined to plasmid pBR322 by in vitro recombination to form plasmid pKH80. The ermC gene of plasmid pE194 confers inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. When pKH80 was transferred to Escherichia coli K-12, the bacteria became resistant to several of these antibodies.  相似文献   

9.
The plasmid pE194 (3.7 kilobases) is capable of integrating into the genome of the bacterial host Bacillus subtilis in the absence of the major homology-dependent RecE recombination system. Multiple recombination sites have been identified on both the B. subtilis chromosome and pE194 (J. Hofemeister, M. Israeli-Reches, and D. Dubnau, Mol. Gen. Genet. 189:58-68, 1983). The B. subtilis chromosomal recombination sites were recovered by genetic cloning, and these sites were studied by nucleotide sequence analysis. Recombination had occurred between regions of short nucleotide homology (6 to 14 base pairs) as indicated by comparison of the plasmid and the host chromosome recombination sites with the crossover sites of the integration products. Recombination between the homologous sequences of the plasmid and the B. subtilis genome produced an integrated pE194 molecule which was bounded by direct repeats of the short homology. These results suggest a recombination model involving a conservative, reciprocal strand exchange between the two recombination sites. A preferred plasmid recombination site was found to occur within a 70-base-pair region which contains a GC-rich dyad symmetry element. Five of seven pE194-integrated strains analyzed had been produced by recombination at different locations within this 70-base-pair interval, located between positions 860 and 930 in pE194. On the basis of these data, mechanisms are discussed to explain the recombinational integration of pE194.  相似文献   

10.
The ermC gene of plasmid pE194 specifies resistance to the macrolidelincosamide-streptogramin B antibiotics. This resistance, as well as synthesis of the 29,000 dalton protein product of ermC, has been shown to be induced by erythromycin. Weisblum and his colleagues have established that macrolide resistance is associated with a specific dimethylation of adenine in 23 S rRNA. We show that pE194 specifies an RNA methylase that can utilize either 50 S ribosomes or 23 S rRNA as substrates. Synthesis of this methylase is induced by low concentrations of erythromycin, and the enzyme is produced in elevated amounts by strains carrying a high copy number mutant of pE194. The methylase comigrates with the 29K ermC product on polyacrylamide gels. The purification and some properties of this methylase are described.  相似文献   

11.
A strain of Staphylococcus epidermidis was transduced to erythromycin resistance, and all of the transductants exhibited the macrolide, lincosamide, streptogramin B resistance phenotype. Curing and antibiotic disk studies also indicated that these resistances were controlled by a single plasmid determinant and were constitutive. Agarose gel electrophoresis of plasmid deoxyribonucleic acid (DNA) from donor, cured, and transduced strains showed that a single plasmid was responsible. This plasmid, designated pNE131, was examined for sequence homology to two other plasmids, pE194 and p1258, from Staphylococcus aureus, which also code for erythromycin resistance. DNA from plasmids pNE131 and pE194 hybridized with one another, but no extensive homology to pI258 with either pNE131 or pE194 was found. Restriction endonuclease digests of pNE131 and pE194 showed no common fragments. However, sequence homology was localized to the nucleotides in pE194 that code for the 29,000-dalton protein responsible for erythromycin resistance. pNE131 was calculated to have 2,220 base pairs and is the smallest naturally occurring plasmid with a known function yet reported in S. epidermidis.  相似文献   

12.
13.
Plasmid pE194 has been shown to be rescued by integration after cultivation of infected Bacillus subtilis recE4 cells at a restrictive high temperature. The plasmid is also spontaneously excised from the chromosome at a low frequency by precise or imprecise excision (J. Hofemeister, M. Israeli-Reches, and D. Dubnau, Mol. Gen. Genet. 189:58-68, 1983). We have investigated nine excision plasmids, carrying insert DNA 1 to 6 kbp in length, either in a complete pE194 or in a partially deleted pE194 copy. Type 1 (additive) excision plasmids have the left- and right-junction DNAs preserved as 13-bp direct repeats (5'-GGGGAGAAAACAT-3') corresponding to the region between positions 864 and 876 in pE194. In type 2 (substitutive) excision plasmids, a conserved 13-bp sequence remains only at the right junction while the left junction has been deleted during the excision process. The type 3 excision plasmid carries at each junction the tetranucleotide 5'-TCCC-3', present in pE194 between positions 1995 and 1998. Although we isolated the excision plasmids from different integration mutants, the insert DNAs of eight independently isolated plasmids showed striking sequence homology, suggesting that they originated from one distinct region of the B. subtilis chromosome. Thus, we postulate that imprecise excision of pE194 occurs most frequently after its translocation from the original insertion site into a preferred excision site within the host chromosome. The imprecise excision from this site occurs at excision breakpoints outside the pE194-chromosome junctions in a chromosomal region which remains to be investigated further.  相似文献   

14.
A G Shivakumar  J Hahn  D Dubnau 《Plasmid》1979,2(2):279-289
The minicell system of Bacillus subtilis has been used to study the expression of plasmid genes using several R plasmids derived from Staphylococcus aureus. pE194, pC194, and pUB110 as well as several mutant and in vitro recombinant derivatives of these plasmids segregate into minicells. A copy control mutant of pE194 was used to show that the extent of segregation is proportional to the copy number. The polypeptides specified by these plasmids were examined by SDS-polyacrylamide gel electrophoresis. Six proteins specified by pE194, an erythromycin resistance plasmid, were identified using cop mutants. These comprise about 90% of the potential coding capacity of the 2.4-Mdal pE194 plasmid. One of these proteins (29,000 daltons) is inducible by erythromycin in the wild type pE194 but is synthesized constitutively in a mutant derivative which also expresses antibiotic resistance constitutively. Several other proteins are detected only in copy control mutants. pUB110, a kanamycin resistance plasmid, expresses three major proteins which comprise 50% of the coding capacity of this 3.0-Mdal plasmid. Two additional minor proteins are occasionally observed. pC194 (2.0 Mdal), which confers chloramphenicol resistance, expresses two polypeptides comprising about 25% of its coding capacity. One of these polypeptides (22,000 daltons) is inducible by chloramphenicol. pBD9, an in vitro composite of pUB110 and pE194, probably expresses all of the major parental plasmid proteins with the exception of one from pUB110 and one from pE194.  相似文献   

15.
pE194, a 3.5-kilobase multicopy plasmid, confers resistance to the macrolide-lincosamide-streptogramin B antibiotics in Bacillus subtilis. By molecular cloning and deletion analysis we have identified a replication segment on the physical map of this plasmid, which consists of about 900 to 1,000 base pairs. This segment contains the replication origin. It also specifies a trans-acting function (rep) required for the stable replication of pE194 and a negatively acting copy control function which is the product of the cop gene. The target sites for the rep and cop gene products are also within this region. Two incompatibility determinants have been mapped on the pE194 genome and their properties are described. One (incA) resides within the replication region and may be identical to cop. incB, not located in the replication region, expresses incompatibility toward a copy control mutant (cop-6) but not toward the wild-type replicon.  相似文献   

16.
With a view to determine a minimal sequence length of homology necessary for RecE-dependent homologous recombination in Bacillus subtilis cells, we developed a system, based on interaction between plasmid replicon and bacterial chromosome. Recombination frequencies were measured between ts plasmid pE194 derivatives carrying chromosomal beta-glucuronidase gene (bglS) fragments of various length, and a bacterial chromosome. The homologous recombination events resulted in bglS gene disruption. Approx. 70 bp of homology were found to be necessary for detectable homologous recombination. Homologous recombination was not detected when homology was equal 25 bp. These data indicate that homology requirement for recombination in B. subtilis differs from that in Escherichia coli.  相似文献   

17.
The illegitimate recombination between S. aureus plasmids pE194 (or pGG20-the hybrid between pE194 and E. coli plasmid pBR322) and pBD17 (plasmid pUB110 without Hpa-II-C-fragment) in B. subtilis was studied. Plasmid cointegrates were generated with the frequency of 1-3.10(-8). Among the 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all the parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions has revealed that in 8 cases recombination occurred between short homologous regions (9-15 b.p.). One of the recombinants resulted from nonhomologous recombination. The similarity between nucleotide sequences of recombination sites of two types of contegrates and those used for pE194 integration into the B. subtilis chromosome (Bashkirov et al. 1987) was demonstrated. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

18.
Plasmid replication stimulates DNA recombination in Bacillus subtilis   总被引:23,自引:0,他引:23  
The effects of plasmid replication on the frequency of homologous recombination have been investigated. For that purpose Bacillus subtilis strains that carry in their chromosome directly repeated DNA sequences, and an integrated copy of plasmid pE194 either proximal or distal to the repeats, were constructed. The repeat consists either of 3.9 X 10(3) base pBR322 sequences or 2.1 X 10(3) base B. subtilis chromosomal sequences. As plasmid pE194 is naturally thermosensitive for replication, the activity of the replicon could be regulated. Recombination between the repeated sequences was infrequent (about 10(-4) per generation) when the integrated plasmid did not replicate. It was 20 to 450 times higher when the plasmid was allowed to replicate, provided that the repeats were in the proximity of the plasmid. These results show that plasmid replication stimulates DNA recombination.  相似文献   

19.
Some features of integration of temperature-sensitive pE194, pGG10 and pGG20 plasmids into the Bacillus subtilis chromosome were studied. Several auxotrophic mutations were obtained using insertion of these plasmids into the chromosome. The sites of plasmids for illegitimate recombination were determined. It was shown that the integration into the Bac. subtilis chromosome is characteristic not only for the plasmid pE194 but is the property of Staphylococcus aureus plasmid pC194 and Escherichia coli pBR322 plasmid. The influence of different Bac. subtilis rec mutations on the frequency of integration was studied.  相似文献   

20.
The nucleotide sequence of pC194, a small plasmid from Staphylococcus aureus which is capable of replication in Bacillus subtilis, has been determined. The genetic determinant of chloramphenicol (CAM) resistance, which includes the chloramphenicol acetyl transferase (CAT) structural gene, the putative promoter and controlling element of this determinant, have been mapped functionally by subcloning a 1,035-nucleotide fragment which specifies the resistance phenotype using plasmid pBR322 as vector. Expression of CAM resistance is autogenously regulated since the 1,035-nucleotide fragment containing the CAT gene sequence and its promoter cloned into pBR322 expresses resistance inducibly in the Escherichia coli host. A presumed controlling element of CAT expression consists of a 37-nucleotide inverted complementary repeat sequence that is located between the -10 and ribosome-loading sequences of the CAT structural gene. Whereas the composite plasmid containing the minimal CAT determinant cloned in pBR322 could not replicate in B. subtilis, ability to replicate in B. subtilis was seen if the fragment cloned included an extension consisting of an additional 300 nucleotides beyond the 5' end of the single pC194 MspI site associated with replication. This 5' extension contained a 120-nucleotide inverted complementary repeat sequence similar to that found in pE194 TaqI fragment B which contains replication sequences of that plasmid. pC194 was found to contain four opening reading frames theoretically capable of coding for proteins with maximum molecular masses, as follows: A, 27,800 daltons; B, 26,200 daltons; C, 15,000 daltons; and D, 9,600 daltons. Interruption or deletion of either frame A or D does not entail loss of ability to replicate or to express CAM resistance, whereas frame B contains the CAT structural gene and frame C contains sequences associated with plasmid replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号