首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The problem of predicting non-long terminal repeats (LTR) like long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) from the DNA sequence is still an open problem in bioinformatics. To elevate the quality of annotations of LINES and SINEs an automated tool "RetroPred" was developed. The pipeline allowed rapid and thorough annotation of non-LTR retrotransposons. The non-LTR retrotransposable elements were initially predicted by Pairwise Aligner for Long Sequences (PALS) and Parsimonious Inference of a Library of Elementary Repeats (PILER). Predicted non-LTR elements were automatically classified into LINEs and SINEs using ANN based on the position specific probability matrix (PSPM) generated by Multiple EM for Motif Elicitation (MEME). The ANN model revealed a superior model (accuracy = 78.79 +/- 6.86 %, Q(pred) = 74.734 +/- 17.08 %, sensitivity = 84.48 +/- 6.73 %, specificity = 77.13 +/- 13.39 %) using four-fold cross validation. As proof of principle, we have thoroughly annotated the location of LINEs and SINEs in rice and Arabidopsis genome using the tool and is proved to be very useful with good accuracy. Our tool is accessible at http://www.juit.ac.in/RepeatPred/home.html.  相似文献   

3.
4.
程旭东  凌宏清 《遗传》2006,28(6):731-736
反转录转座子是基因组进化的推动者之一。分为LTR和非LTR两种类型。前者是真核基因组的主要组分,结构和转座方式与逆转录病毒类似。后者是最初发现于动物基因组新近发现在植物基因组中也广泛存在的新型重复序列,包括LINEs(long interspersed nuclear elements)和SINEs(short interspersed nuclear elements)两个亚型。它们大多因自身或受宿主基因组的调控而失去转座活性。其转座机理目前还不十分清楚,推测LINEs可以自主转座,SINEs依赖其他转座子被动转座。种系分析认为LINEs可能是最古老的反转录转座子,SINEs的起源未知。文章对以上内容进行了归纳和讨论。  相似文献   

5.
The availability of complete or nearly complete genome sequences from several plant species permits detailed discovery and cross‐species comparison of transposable elements (TEs) at the whole genome level. We initially investigated 510 long terminal repeat‐retrotransposon (LTR‐RT) families comprising 32 370 elements in soybean (Glycine max (L.) Merr.). Approximately 87% of these elements were located in recombination‐suppressed pericentromeric regions, where the ratio (1.26) of solo LTRs to intact elements (S/I) is significantly lower than that of chromosome arms (1.62). Further analysis revealed a significant positive correlation between S/I and LTR sizes, indicating that larger LTRs facilitate solo LTR formation. Phylogenetic analysis revealed seven Copia and five Gypsy evolutionary lineages that were present before the divergence of eudicot and monocot species, but the scales and timeframes within which they proliferated vary dramatically across families, lineages and species, and notably, a Copia lineage has been lost in soybean. Analysis of the physical association of LTR‐RTs with centromere satellite repeats identified two putative centromere retrotransposon (CR) families of soybean, which were grouped into the CR (e.g. CRR and CRM) lineage found in grasses, indicating that the ‘functional specification’ of CR pre‐dates the bifurcation of eudicots and monocots. However, a number of families of the CR lineage are not concentrated in centromeres, suggesting that their CR roles may now be defunct. Our data also suggest that the envelope‐like genes in the putative Copia retrovirus‐like family are probably derived from the Gypsy retrovirus‐like lineage, and thus we propose the hypothesis of a single ancient origin of envelope‐like genes in flowering plants.  相似文献   

6.
7.
8.
Grapevine is one of the most economically important crops in the world. Although long terminal repeat (LTR) retrotransposons are thought to have played an important role in plants, its distribution in grapevine is not clear. Here, we identified genome-wide intact LTR retrotransposons in a total of six high-quality grapevine genomes from Vitis vinifera L., Vitis sylvestris C.C. Gmel., Vitis riparia Michx. and Vitis amurensis Rupr. with an average of 2938 per genome. Among them, the Copia superfamily (particularly for Ale) is a major component of the LTR retrotransposon in grapevine. Insertion time and copy number analysis revealed that the expansion of 70% LTR retrotransposons concentrating on approximately 2.5 Ma was able to drive genome size variation. Phylogenetic tree and syntenic analyses showed that most LTR retrotransposons in these genomes formed and evolved after species divergence. Furthermore, the function and expression of genes inserted by LTR retrotransposons in V. vinifera (Pinot noir) and V. riparia were explored. The length and expression of genes related to starch metabolism and quinone synthesis pathway in Pinot noir and environmental adaptation pathway in V. riparia were significantly affected by LTR retrotransposon insertion. The results improve the understanding of LTR retrotransposons in grapevine genomes and provide insights for its potential contribution to grapevine trait evolution.  相似文献   

9.
10.
11.
The fungus Magnaporthe oryzae is a serious pathogen of rice and other grasses. Telomeric restriction fragments in Magnaporthe isolates that infect perennial ryegrass (prg) are hotspots for genomic rearrangement and undergo frequent, spontaneous alterations during fungal culture. The telomeres of rice-infecting isolates are very stable by comparison. Sequencing of chromosome ends from a number of prg-infecting isolates revealed two related non-LTR retrotransposons (M. oryzae Telomeric Retrotransposons or MoTeRs) inserted in the telomere repeats. This contrasts with rice pathogen telomeres that are uninterrupted by other sequences. Genetic evidence indicates that the MoTeR elements are responsible for the observed instability. MoTeRs represent a new family of telomere-targeted transposons whose members are found exclusively in fungi.  相似文献   

12.
13.
* BACKGROUND AND AIMS: The genus Hordeum exists at three ploidy levels (2x, 4x and 6x) and presents excellent material for investigating the patterns of polyploid evolution in plants. Here the aim was to clarify the ancestry of American polyploid species with the I genome. * METHODS: Chromosomal locations of 5S and 18S-25S ribosomal RNA genes were determined by fluorescence in situ hybridization (FISH). In both polyploid and diploid species, variation in 18S-25S rDNA repeated sequences was analysed by the RFLP technique. * KEY RESULTS: Six American tetraploid species were divided into two types that differed in the number of rDNA sites and RFLP profiles. Four hexaploid species were similar in number and location of both types of rDNA sites, but the RFLP profiles of 18S-25S rDNA revealed one species, H. arizonicum, with a different ancestry. * CONCLUSIONS: Five American perennial tetraploid species appear to be alloploids having the genomes of an Asian diploid H. roshevitzii and an American diploid species. The North American annual tetraploid H. depressum is probably a segmental alloploid combining the two closely related genomes of American diploid species. A hexaploid species, H. arizonicum, involves a diploid species, H. pusillum, in its ancestry; both species share the annual growth habit and are distributed in North America. Polymorphisms of rDNA sites detected by FISH and RFLP analyses provide useful information to infer the phylogenetic relationships of I-genome Hordeum species because of their highly conserved nature during polyploid evolution.  相似文献   

14.
Genome size variation in plants is thought to be correlatedwith cytological, physiological, or ecological characters. However,conclusions drawn in several studies were often contradictory.To analyze nuclear genome size evolution in a phylogenetic framework,DNA contents of 134 accessions, representing all but one speciesof the barley genus Hordeum L., were measured by flow cytometry.The 2C DNA contents were in a range from 6.85 to 10.67 pg indiploids (2n = 14) and reached up to 29.85 pg in hexaploid species(2n = 42). The smallest genomes were found in taxa from theNew World, which became secondarily annual, whereas the largestdiploid genomes occur in Eurasian annuals. Genome sizes of polyploidtaxa equaled mostly the added sizes of their proposed progenitorsor were slightly (1% to 5%) smaller. The analysis of ancestralgenome sizes on the base of the phylogeny of the genus revealedlineages with decreasing and with increasing genome sizes. Correlationsof intraspecific genome size variation with the length of vegetationperiod were found in H. marinum populations from Western Europebut were not significant within two species from South America.On a higher taxonomical level (i.e., for species groups or theentire genus), environmental correlations were absent. Thiscould mostly be attributed to the superimposition of life-formchanges and phylogenetic constraints, which conceal ecogeographicalcorrelations.  相似文献   

15.
We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).  相似文献   

16.
Although most LINEs (long interspersed nuclear elements), which are autonomous non-long-terminal-repeat retrotransposons, are inserted throughout the host genome, three groups of LINEs, the early-branched group, the Tx group, and the R1 clade, are inserted into specific sites within the target sequence. We previously characterized the sequence specificity of the R1 clade elements. In this study, we screened the other two groups of sequence-specific LINEs from public DNA databases, reconstructed elements from fragmented sequences, identified their target sequences, and analyzed them phylogenetically. We characterized 13 elements in the early-branched group and 13 in the Tx group. In the early-branched group, we identified R2 elements from sea squirts and zebrafish in this study, although R2 has not been characterized outside the arthropod group to date. This is the first evidence of cross-phylum distribution of sequence-specific LINEs. The Dong element also occurs across phyla, among arthropods and mollusks. In the Tx group, we characterized five novel sequence-specific families: Kibi for TC repeats, Koshi for TTC repeats, Keno for the U2 snRNA gene, Dewa for the tRNA tandem arrays, and Mutsu for the 5S rRNA gene. Keno and Mutsu insert into the highly conserved region within small RNA genes and destroy the targets. Several copies of Dewa insert different positions of tRNA tandem array, which indicates a certain "site specifier" other than sequence-specific endonuclease. In all three groups, LINEs specific for the rRNA genes or microsatellites can occur as multiple families in one organism. This indicates that the copy number of a target sequence is the primary factor to restrict the variety of sequence specificity of LINEs.  相似文献   

17.
Background and AimsThe dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number.MethodsWe conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation.Key ResultsThe measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution.ConclusionsOur results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.  相似文献   

18.
Random amplified polymorphic DNAs (RAPD) analysis has been adapted to assess the degree of RAPD polymorphism within the genus Hordeum to determine if this approach can distinguish wild and cultivated species. Nineteen wild and seven cultivated accessions were evaluated using 4 random 10-mer primers. The potential of the RAPD assay was further increased by combining two primers in a single polymerase chain reaction (PCR). RAPD fragments generated by two pairs of arbitrary 10-mer primers discriminated six wild species and one cultivated species by banding profiles. The size of the amplified DNA fragments ranged from 150 to 2300 base pairs. 33 %percent of the fragments were common to both wild and cultivated species; 67% were specific to either wild or cultivated species. The average difference in fragments was less within the species than among the species. By comparing RAPD fingerprints of wild and cultivated barley, markers were identified among the set of amplified DNA fragments which could be used to distinguish wild and cultivated Hordeum species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
转座子是真核生物基因组的重要组成成分。为了研究家蚕Bombyx mori长末端重复序列 (long terminal repeat, LTR)逆转录转座子的分类及进化, 本研究采用de novo预测和同源性搜索相结合的方法, 在家蚕基因组中共鉴定出了38个LTR逆转录转座子家族, 序列长度占整个基因组的0.64%, 远小于先前预测的11.8%, 其中有6个家族为本研究的新发现。38个家族中, 26个家族有表达序列标签 (expression sequence tag, EST)证据, 表明这些家族具有潜在的活性。对有EST证据的6个家族和没有EST证据的5个家族用RT-PCR进行了组织表达谱实验, 结果表明这11个家族在一些组织中有表达, 这进一步证实了这些家族具有转录活性, 基于此我们推测家蚕中大部分的LTR逆转录转座子家族很可能具有潜在活性。对转座子的插入时间进行估计, 结果表明绝大部分元件都是最近1百万年内插入到家蚕基因组中的。我们还比较了黑腹果蝇Drosophila melanogaster、 冈比亚按蚊Anopheles gambiae和家蚕B. mori中Ty3/Gypsy超家族分支的差异, 结果表明不同枝在不同昆虫中有着不同的扩张。家蚕中LTR逆转录转座子的鉴定和系统分析有助于我们理解逆转录转座子在昆虫进化中的作用。  相似文献   

20.
There is no logical or theoretical barrier to the proposition that organismal and cell signaling could transduce environmental signals into specific, beneficial changes in primary structure of noncoding DNA via repetitive element movement or mutation. Repetitive DNA elements, including transposons and microsatellites, are known to influence the structure and expression of protein-coding genes, and to be responsive to environmental signals in some cases. These effects may create fodder for adaptive evolution, at rates exceeding those observed for point mutations. In many cases, the changes are no doubt random, and fitness is increased through simple natural selection. However, some transposons insert at specific sites, and certain regions of the genome exhibit selectively and beneficially high mutation rates in a range of organisms. In multicellular organisms, this could benefit individuals in situations with significant potential for clonal expansion: early life stages or regenerative tissues in animals, and most plant tissues. Transmission of the change to the next generation could occur in plants and, under some circumstances, in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号