首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee WY  Koh EJ  Lee SM 《Nitric oxide》2012,26(1):1-8
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50 mg/kg) was intraperitoneally administered 18 and 1 h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5 h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.  相似文献   

2.
Ischemic preconditioning (IPC) strongly protects against ischemia-reperfusion injury; however, its effect on subsequent myocardial oxygenation is unknown. Therefore, we determine in an in vivo mouse model of regional ischemia and reperfusion (I/R) if IPC attenuates postischemic myocardial hyperoxygenation and decreases formation of reactive oxygen/nitrogen species (ROS/RNS), with preservation of mitochondrial function. The following five groups of mice were studied: sham, control (I/R), ischemic preconditioning (IPC + I/R, 3 cycles of 5 min coronary occlusion/5 min reperfusion) and IPC + I/R N(G)-nitro-L-arginine methyl ester treated, and IPC + I/R eNOS knockout mice. I/R and IPC + I/R mice were subjected to 30 min regional ischemia followed by 60 min reperfusion. Myocardial Po(2) and redox state were monitored by electron paramagnetic resonance spectroscopy. In the IPC + I/R, but not the I/R group, regional blood flow was increased after reperfusion. Po(2) upon reperfusion increased significantly above preischemic values in I/R but not in IPC + I/R mice. Tissue redox state was measured from the reduction rate of a spin probe, and this rate was 60% higher in IPC than in non-IPC hearts. Activities of NADH dehydrogenase (NADH-DH) and cytochrome c oxidase (CcO) were reduced in I/R mice after 60 min reperfusion but conserved in IPC + I/R mice compared with sham. There were no differences in NADH-DH and CcO expression in I/R and IPC + I/R groups compared with sham. After 60 min reperfusion, strong nitrotyrosine formation was observed in I/R mice, but only weak staining was observed in IPC + I/R mice. Thus IPC markedly attenuates postischemic myocardial hyperoxygenation with less ROS/RNS generation and preservation of mitochondrial O(2) metabolism because of conserved NADH-DH and CcO activities.  相似文献   

3.
《Free radical research》2013,47(10):1210-1217
Abstract

While ischemic preconditioning (IPC) and other cardioprotective interventions have been proposed to protect the heart from ischemia/reperfusion (I/R) injury by inhibiting mitochondrial complex I activity upon reperfusion, the exact mechanism underlying the modulation of complex I activity remains elusive. This study was aimed to test the hypothesis that IPC modulates complex I activity at reperfusion by activating mitochondrial Src tyrosine kinase, and induces cardioprotection against I/R injury. Isolated rat hearts were preconditioned by three cycles of 5-min ischemia and 5-min reperfusion prior to 30-min index ischemia followed by 2 h of reperfusion. Mitochondrial Src phosphorylation (Tyr416) was dramatically decreased during I/R, implying inactivation of Src tyrosine kinase by I/R. IPC increased mitochondrial Src phosphorylation upon reperfusion and this was inhibited by the selective Src tyrosine kinase inhibitor PP2. IPC's anti-infarct effect was inhibited by the selective Src tyrosine kinase inhibitor PP2. Complex I activity was significantly increased upon reperfusion, an effect that was prevented by IPC in a Src tyrosine kinase-dependent manner. In support, Src and phospho-Src were found in complex I. Furthermore, IPC prevented hypoxia/reoxygenation-induced mitochondrial reactive oxygen species (ROS) generation and cellular injury in rat cardiomyocytes, which was revoked by PP2. Finally, IPC reduced LDH release induced by both hypoxia/reoxygenation and simulated ischemia/reperfusion, an effect that was reversed by PP2 and Src siRNA. These data suggest that mitochondrial Src tyrosine kinase accounts for the inhibitory action of IPC on complex I and mitochondrial ROS generation, and thereby plays a role in the cardioprotective effect of IPC.  相似文献   

4.
Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H(2)O(2) to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H(2)O(2). PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability.  相似文献   

5.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

6.
Hepatic ischemia/reperfusion (I/R) injury is an inevitable consequence during liver surgery. Ischemic preconditioning (IPC) has been shown to protect the livers from I/R injury, partially mediated by preservation of hepatic ATP contents. However, the precise molecular mechanisms of these events remain poorly elucidated. In this study, liver proteomes of the mice subjected to I/R injury pretreated with or without IPC were analyzed using 2‐DE combined with MALDI‐TOF/TOF mass analysis. Twenty proteins showing more than 1.5‐fold difference were identified in the livers upon I/R injury. Among these proteins, four proteins were further regulated by IPC when compared with nonpretreated controls. One of these proteins, ATP synthase β subunit (ATP5β) catalyzes the rate‐limiting step of ATP formation. The expression level of ATP5β, which was further validated by Western blot analysis, was significantly decreased upon I/R injury while turned over by IPC pretreatment. Change pattern of hepatic ATP corresponded with that of ATP5β expression, indicating that increasing hepatic ATP5β expression might be a reason for ATP‐preserving effect of IPC. In summary, this study provided new clues for understanding the mechanisms of IPC against I/R injury. The protective role of ATP5β might give evidences for developing new therapeutic approaches against hepatic I/R injury.  相似文献   

7.
Zhang ZY  Liu XH  Guo XS  Liu FY 《生理学报》2007,59(5):643-650
本实验分别在整体和细胞水平观察缺血后处理(ischemic postconditioning,I-postC)对骨骼肌缺血/再灌注(ischemia/reperfusion,I/R)损伤的影响,并探讨钙网蛋白(calreticulin,CRT)介导的信号转导机制。(1)整体实验:健康雄性Wistar大鼠48只,无创动脉夹夹闭右侧股动脉4h,松夹再灌注12h或24h建立大鼠右后肢I/R损伤模型,随机分为I/R组、缺血预处理(ischemic preconditioning,IPC)组(5min缺血/5min再灌,3个循环)和I-postC组(1min再灌/1min缺血,3个循环)(n=16),大鼠左后肢做对照处理。再灌注结束时测定血浆乳酸脱氢酶(1actate dehydrogenase,LDH)活性、骨骼肌湿干重比值(wet/dryweightratio,W/D);电镜观察骨骼肌超微结构变化:Westernblot检测骨骼肌CRT、钙调神经磷酸酶(calcineurin,CaN)的表达。(2)细胞培养实验:原代培养Sprague-Dawley乳鼠骨骼肌细胞,随机分为6组:正常对照组、缺氧/复氧(hypoxia/reoxygenation,H/R)组、缺氧预处理(hypoxic preconditioning,HPC)组、缺氧后处理(hypoxic postconditioning,H-postC)组、CaN抑制剂环孢素A(cyclosporine,CsA)+H/R组和CsA+H-postC组。台盼蓝排斥实验、流式细胞仪检测细胞损伤情况:Westernblot检测骨骼肌细胞CRT和CaN的表达。结果显示:(1)在整体动物实验中,I-postC可显著降低血浆LDH活性和组织水肿,骨骼肌超微结构损伤减轻,无细胞核凋亡现象,与IPC组相比无显著差异。I-postC再灌注12h和24hCRT表达分别较I/R12h和24h组高4.39倍和1.02倍(P〈0.05),CaN表达分别增高1.96倍和0.63倍(尸〈0.05)。相关分析显示CRT表达与CaN表达呈正相关(r-0.865,P〈0.01)。(2)在细胞培养实验中,H-postC可减轻H/R诱导的骨骼肌细胞凋亡,增加细胞存活率,与HPC组相比无显著差异,CsA可抑制H-postC的保护作用;H-postC可上调CRT和CaN的表达,分别较H/R组增加31.8%(P〈0.05)和6.02%,加入CsA后CaN表达降低44.02%(P〈0.05vsH-postC)。上述整体实验和细胞培养实验结果提示,I-postC与IPC保护作用相似,可显著减轻I/R损伤;CRT上调介导的CaN表达增加可能参与了I-postC的保护作用,抑制CaN表达可降低I-postC的保护作用。  相似文献   

8.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

9.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

10.
Ischemic preconditioning has shown to reduce apoptosis in the intestinal mucosa during ischemia/reperfusion. This study evaluated if the decrease of apoptotic events found during preconditioning could be related with a reduction of the substrate (i.e., xanthine/hypoxanthine) available for xanthine oxidase (XO). Animals were randomly assigned to the following study groups: C, control; I/R, ischemia/reperfusion; P+I/R, ischemic preconditioning; P+I/R+H/X, ischemic preconditioning plus hypoxanthine/xanthine, and P+I/R+H/X+Allo, ischemic preconditioning plus hypoxanthine/xanthine plus allopurinol. Caspase-3 activity, DNA fragmentation and TUNEL staining increased in the I/R group compared to control. Ischemic preconditioning (P+I/R group) was able to reverse these apoptotic variables to a level similar to that of control rats. The addition of hypoxanthine/xanthine to rats subjected to ischemic preconditioning (P+I/R+H/X group) showed the highest apoptotic activity; however, further addition of allopurinol (P+I/R+H/X+Allo group) decreased significantly apoptotic activity and events. In conclusion, intestinal ischemic preconditioning is able to reduce apoptosis during the following sustained ischemia/reperfusion event because of a reduced accumulation of xanthine/hypoxanthine nucleotide.  相似文献   

11.
Liver ischemia/reperfusion (I/R) injury is a serious clinical problem. The reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) are important mediators in liver I/R injury. This study was designed to investigate the effect of preischemic treatment with fenofibrate (Peroxisome proliferator-activated receptor- α agonist) on the oxidative stress and inflammatory response to hepatic I/R injury in rats. Hepatic I/R was induced by clamping the blood supply of the left lateral and median lobes of the liver for 60 min, followed by reperfusion for 4 h. Each animal group was pretreated with a single dose of fenofibrate (50 mg/kg body weight) intraperitoneally 1 h before ischemia. At the end of reperfusion, blood samples and liver tissues were obtained to assess serum alanine aminotransferase (ALT), TNF-α, hepatic malondialdehyde (MDA) and superoxide dismutase activity (SOD). Liver specimens were obtained and processed for light and electron microscopic study. Hepatic I/R induced a significant elevation of serum ALT and TNF-α with significant elevation of hepatic MDA and reduction of SOD activity. Histopathological examination revealed hepatic inflammation, necrosis and apoptosis. Preischemic treatment with fenofibrate at a dose of 50 mg/kg significantly attenuated the biochemical and structural alterations of I/R-induced liver injury.  相似文献   

12.
Although ischemia-reperfusion (I/R) can initiate apoptosis, the timing and contribution of the mitochondrial/cytochrome c apoptosis death pathway to I/R injury is unclear. We studied the timing of cytochrome c release during I/R and whether subsequent caspase activation contributes to reperfusion injury in confluent chick cardiomyocytes. One-hour simulated ischemia followed by 3-h reperfusion resulted in significant cell death, with most cell death evident during the reperfusion phase and demonstrating mitochondrial cytochrome c release within 5 min after reperfusion. By contrast, cells exposed to prolonged ischemia for 4 h had only marginally increased cell death and no detectable cytochrome c release into the cytosol. Caspase activation could not be detected after ischemia only, but it significantly increased after reperfusion. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, Ac-Asp-Gln-Thr-Asp-H, or benzyloxycarbonyl-Leu-Glu (Ome)-His-Asp-(Ome)-fluoromethyl ketone given only at reperfusion significantly attenuated cell death and resulted in return of contraction. Antixoxidants decreased cytochrome c release, nuclear condensation, and cell death. These results suggest that reperfusion oxidants initiate cytochrome c release within minutes, and apoptosis within hours, significant enough to increase cell death and contractile dysfunction.  相似文献   

13.
Hepatic ischemia and reperfusion injury (I/R) is accompanied by excessive reactive oxygen species and resultant sterile inflammation. Chlorogenic acid (CGA), one of the most abundant polyphenols in the human diet, has been shown to exert potent anti-inflammatory, antibacterial and antioxidant activities. Thus, the purpose of the present study was to investigate protective effects of CGA and its molecular mechanisms against hepatic I/R injury. Rats were subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion. CGA (2.5, 5 and 10 mg/kg, ip) was administered twice: 10 min prior to ischemia and 10 min before reperfusion. CGA treatment resulted in marked improvement of hepatic function and histology, and suppressed oxidative stress, as indicated by hepatic lipid peroxidation and glutathione level. Levels of serum tumor necrosis factor-α, inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions were up-regulated after I/R; these effects were attenuated by CGA. Immunoblot results showed that CGA reduced I/R-induced toll-like receptor 4 overexpression, nuclear translocation of nuclear factor kappa B and interferon regulatory factor-1, high-mobility group box-1 release into extracellular milieu, and enhanced heme oxygenase-1 expression and nuclear translocation of nuclear factor erythroid 2-related factor 2. Our results suggest that CGA alleviates I/R-induced liver injury and that this protection is likely due to inhibition of inflammatory response and enhancement of antioxidant defense systems. Therefore, CGA might have potential as an agent for use in clinical treatment of hepatic I/R injury.  相似文献   

14.
Whether ischemic postconditioning (IPC) can significantly alleviate ischemic injury hinges on the appropriate measure. In this study, the expression RGMa and IL-1β, IL-6 are investigated to estimate the therapeutic benefits of various postconditioning strategies after cerebral ischemia/reperfusion. The study consists of the sham-operated group and five treatment groups: ischemia/reperfusion (I/R), two proximate ischemic postconditioning (IPC-S and IPC-M), remote postconditioning (RIPC) and delayed postconditioning (DIPC) groups. We find that rats in IPC and RIPC groups exhibit significantly less neural deficit and lower infarct volume than that in I/R and DIPC groups after ischemia/reperfusion. Moreover, in ischemic cortex and hippocampus, the mRNA level of RGMa is much lower in IPC and RIPC groups. Immunohistochemical analysis indicates that the expression of RGMa, IL-1β and IL-6 are reduced in IPC and RIPC groups (especially in IPC-S group). Furthermore, neurofilament staining reveals that the rats in IPC and RIPC groups have less axonal injury than that in I/R and DIPC groups. Our studies suggest that the optimal strategy to attenuate cerebral ischemia/reperfusion is achieved by early, short-term, and multiple cycles of proximal IPC. The cerebral protective effect of IPC may be associated with the decreased expression of RGMa and inflammation mediators.  相似文献   

15.
目的:观察肢体缺血/再灌注(I/R)后一氧化氮/内皮素-1(NO/ET-1)失衡与肝损伤的关系以及缺血预适应(1pc)对NO/ET-1系统的调节作用。方法:实验用雄性Wistar大鼠18只,随机分为3组(n=6):对照组(control)、缺血/再灌注组(I/R)和缺血预适应组(IPC+I/R),分别测定血浆谷草转氨酶(ALT)、谷丙转氨酶(AST);血浆和肝组织一氧化氮(NO)、内皮素-1(ET-I)的含量变化,一氧化氮/内皮素-1(NO/ET-1)比值及肝组织的总一氧化氮合酶(tNOS)、诱导型一氧化氮合酶(iNOS)、结构型一氧化氮合酶(cNOS)的水平;免疫组化法检测肝组织的诱导型一氧化氮舍酶(iNOS)、内皮型一氧化氮合酶(eNOS)的表达;HE染色,在光学显微镜下观察肝组织的形态学改变。结果:发现肢体再灌注期血浆和肝组织NO、ET-1均明显增加,而NO/ET-1的比值却明显降低,同时血浆ALT、AST升高,光学显微镜下肝细胞、内皮细胞肿胀,肝细胞变性及肝窦淤血,炎性细胞浸润,肝损伤加重,肢体I/R后肝组织iNOS的表达增强,而eNOS(主要为eNOS)的表达减少,伴有总NOS活性增强。说明肢体缺血再灌注后肝组织内皮源的NO产生减少,而非内皮源的NO产生增多;IPC减轻了肢体I/R后引起的NO/ET-1失衡。结论:肢体I/R后肝组织损伤与NO/ET-1失衡有关,IPC对肢体I/R继发的肝组织损伤的保护作用可能是通过对NO/ET-1系统的调节作用而介导的,此时内皮源的NO产生增加,非内皮源的NO产生减少。  相似文献   

16.
缺血预适应对大鼠肢体缺血/再灌注后肺损伤的影响   总被引:2,自引:0,他引:2  
目的:观察肢体缺血预适应对大鼠肢体缺血/再灌注(I/R)后肺损伤的影响并探讨其机制。方法:将雄性Wistar大鼠随机分为4组(n=8):对照组(C),肢体缺血/再灌注组(LI/R),缺血预适应组(IPC)和L-NAME组。各组大鼠均于肢体缺血4h再灌注4h处死,分别测定其动脉血氧分压(PaO2)和二氧化碳分压(PaCO2),血浆及肺组织丙二醛(MDA)、一氧化氮(NO)、内皮素(ET)含量,计算血浆NO/ET比值;以及肺湿干比(W/D)、肺系数(LI),肺组织髓过氧化物酶(MPO)含量。结果:大鼠LI/R后4h,PaO2明显降低;W/D、LI、血浆及肺组织的MDA、NO、ET和肺组织MPO活性均明显增加,而血浆NO/ET比值明显减小。与LI/R组比较,IPC组各项损伤指标明显减轻,NO水平升高,血浆NO/ET比值明显增大。与对照组和IPC组比较,L-NAME处理组,各项损伤指标数值明显增加,NO水平降低;血浆NO/ET比值明显减小,差异均具有显著性。各组大鼠PaCO2的变化无显著性。结论:缺血预适应对肢体缺血/再灌注后肺损伤具有保护作用,其机制可能与内源性NO合成增加有关。  相似文献   

17.
Anaesthetic preconditioning (APC) and ischemic preconditioning (IPC) ameliorate liver ischemia–reperfusion (I/R) injury and are important for regulating hepatic I/R injury. MicroRNAs (miRNAs) are short, noncoding RNA molecules of 21–23 nucleotides in length, and are currently under intensive investigation regarding their ability to regulate gene expression in a wide range of species. miRNA activity is involved in controlling a wide range of biological functions and processes. We evaluated whether APC and IPC are mediated by the same miRNAs by performing comprehensive miRNA screening experiments in a rat model of hepatic I/R injury. Twenty-one rats were randomly divided into three groups (n = 7/group): control (mock preconditioning), APC, and IPC. Control rats were subjected to 60 min of hepatic ischemia followed by 4 h of reperfusion, whereas the APC and IPC groups were preconditioned with 2% sevoflurane and hepatic ischemia for 10 min prior to ischemia-reperfusion, respectively. Liver samples were collected to measure miRNA levels after 3 h of reperfusion, and gene networks and canonical pathways were identified using Ingenuity Pathway Analysis (IPA). Blood samples were collected to measure the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Although haemodynamic parameters did not vary among the groups, AST and ALT levels were significantly higher in the control group than in the APC and IPC groups. Comprehensive miRNA screening experiments revealed that most miRNAs altered in the APC group were common to those in the IPC group. IPA identified five miRNAs related to the Akt–glycogen synthase kinase-3β (GSK-3β)–cyclin D1 pathway that were significantly affected by both preconditioning strategies. The application of either APC or IPC to ameliorate hepatic I/R injury results in expression of several common miRNAs that are related to the Akt–GSK–cyclin D1 pathway.  相似文献   

18.
目的:观察肢体缺血再灌注(LI/R)对胃粘膜的损伤作用及缺血预处理对其影响,探讨胃粘膜损伤的机制及缺血预处理(IPC)的作用机理。方法:观察并测定肢体缺血4h再灌注4h后以及应用肢体缺血预处理干预后各组胃粘膜损伤指数,胃结合粘液量;检测胃粘膜中髓过氧化物酶(MPO)、超氧化物歧化酶(SOD)、丙二醛(MDA)、黄嘌呤氧化酶(XOD)含量的变化以及血浆中乳酸脱氢酶(LDH)的含量变化。结果:大鼠LI/R后胃粘膜损伤指数增加;胃结合粘液量较对照组显著下降;胃粘膜中MPO、MDA、XOD的值均较对照组增加,血浆中LDH的含量亦较对照组显著增加,胃粘膜组织中SOD的酶活力下降;IPC组与LIR组对比,胃结合粘液量较LIR组显著增加:胃粘膜损伤指数、胃粘膜中MPO的含量、以及胃粘膜中MDA、XOD、LDH均较LI/R组明显降低;胃粘膜中SOD酶活力增强。结论:LI/R作为应激原可引起胃粘膜损伤,导致应激性溃疡的发生;自由基在肢体缺血再/灌注后继发胃粘膜损伤过程中发挥作用。缺血预处理可减轻肢体缺血再灌注后的胃粘膜损伤,其作用机制可能是通过减少自由基的产生而发挥其保护作用。  相似文献   

19.
PNA+Tempol, albumin containing conjugated (polynitroxyl albumin; PNA) and free (4-hydroxyl-2,2,6,6-tetramethyl-piperidinyl-1-oxyl; Tempol) nitroxide may protect against injury caused by reactive oxygen species. Therefore, the actions of PNA+Tempol on liver injury and inflammation induced by hepatic ischemia and reperfusion (I/R) were examined. Rats were subjected to 1 h ischemia followed by 24 h reperfusion in the absence (I/R) or presence of PNA+Tempol (25%; 15 mL/kg, i.v.) (I/R+PNA+Tempol) or human serum albumin (23%; 13.5 mL/kg, i.v.) (I/R+HSA). Test solutions were administered prior to and for 2 h during reperfusion. Sham-operated rats underwent surgery with neither ischemia nor infusion. I/R+PNA+Tempol rats had significantly less liver injury and inflammation than I/R rats. I/R+PNA+Tempol livers exhibited focal lesions whereas I/R livers exhibited global necrosis. Likewise, plasma ALT activity was significantly lower in I/R+PNA+Tempol rats. PNA+Tempol reduced I/R-induced neutrophil accumulation and intercellular adhesion molecule-1 (ICAM-1) expression. HSA did not alter I/R-induced liver injury or inflammation. Sham-operated rats exhibited normal liver morphology and no inflammation. Attenuation of I/R liver injury by PNA+Tempol may be mediated by its effect on inflammation, the major contributor to I/R injury. Reduction of inflammation by PNA+Tempol is most likely due to the antioxidative nature of the nitroxides.  相似文献   

20.
The present study was aimed to evaluate the efficacy of L-arginine on mitochondrial function in ischemic and reperfusion (I/R) induced hepatic injury. Adult Wistar rat were subjected to 1 h of partial liver ischemia followed by 3 hour reperfusion. Eighteen wistar rats were divided into three groups viz. sham-operated control group (I) (n = 6), ischemia and reperfusion (I/R) group (II) (n = 6), L-arginine treated group (100 mg/kg body weight/daily by oral route for 7 days before induced ischemia reperfusion maneuver) (III) (n = 6). Mitochondrial injury was assessed in terms of decreased (P < 0.05) activities of mitochondrial antioxidant enzymes (GSH, SOD, CAT), respiratory marker enzymes (NADH dehydrogenase, cytochrome c oxidases) and hepatocytes nitric oxide production. Pre-treatment with L-arginine (10 mg/kg/p.o. for 7 days) significantly counteracted the alternations of hepatic enzymes and mitochondrial respiratory and antioxidant enzymes. In addition, electron microscopy and histopathology study showed the restoration of cellular normalcy and accredits the cytoprotective role of L-arginine against I/R induced hepatocellular injury. On the basis of these findings it may be concluded that L-arginine protects mitochondrial function in hepatic ischemic and reperfused liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号