首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F1-ATPase is a rotary molecular machine with a subunit stoichiometry of α3β3γ1δ1ε1. It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α3β3 core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F1-ATPase have suggested that the α3β3 core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F1-ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρo) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F1 complexes retained 21.7 to 44.6% of the native F1-ATPase activity. The γ-less F1 subcomplex was assembled but was structurally and functionally labile in vitro. Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρo conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α3β3 subcomplex.  相似文献   

2.
The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599–608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αEE interface, and two partial γ rotations lock the N terminus of ζ in an “inhibition-general core region,” blocking further γ rotation, while the ζ globular domain anchors it to the closed αDPDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDPDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria.  相似文献   

3.
Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria   总被引:22,自引:2,他引:20       下载免费PDF全文
The ATPase subunit 6, located in the inner mitochondrial membrane, is encoded by mitochondrial genomes in animals and fungi. We have isolated and characterized a mitochondrial gene, designated atp 6, that encodes the subunit 6 polypeptide of Zea mays. Nucleotide and predicted amino acid sequence comparisons have revealed a homology of 44.6 and 33.2% with the yeast ATPase subunit 6 gene and polypeptide, respectively. The predicted protein in maize contains 291 amino acids with a molecular weight of 31,721. Hydropathy profiles generated for the maize and yeast polypeptides are very similar and contain large hydrophobic domains, characteristic of membrane bound proteins. RNA transfer blot analysis indicates that atp 6 is actively transcribed. Interestingly, 122 base pairs of nucleotide sequence interior to atp 6 have extensive homology with the 5′ end of the cytochrome oxidase subunit II gene of maize mitochondria, suggesting recombination between the two genes.  相似文献   

4.
Hack E  Leaver CJ 《The EMBO journal》1983,2(10):1783-1789
The F1-ATPase complex has been purified from maize (Zea mays L.) mitochondria and shown to consist of five subunits with mol. wts. of 58 000 (α), 56 000 (β), 35 000 (γ), 22 000 (δ) and 8000 (ε). The α-subunit co-migrates on one- and two- dimensional isoelectric focussing-SDS polyacrylamide gels with the major polypeptide synthesised by isolated mitochondria. One-dimensional proteolytic peptide mapping and immunoprecipitation confirms that the α-subunit is a mitochondrial translation product and therefore presumably encoded in mitochondrial DNA. This contrasts with the situation in animal and fungal cells where all five subunits of the F1-ATPase are encoded by the nuclear genome and synthesised on cytosolic ribosomes.  相似文献   

5.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC.  相似文献   

6.
Corn mitochondrial F1-ATPase was purified from submitochondrial particles by chloroform extraction. Enzyme stored in ammonium sulfate at 4°C was substantially activated by ATP, while enzyme stored at −70°C in 25% glycerol was not. Enzyme in glycerol remained fully active (8-9 micromoles Pi released per minute per milligram), while the ammonium sulfate preparations steadily lost activity over a 2-month storage period. The enzyme was cold labile, and inactived by 4 minutes at 60°C. Treatment with octylglucoside resulted in complete loss of activity, while vanadate had no effect on activity. The apparent subunit molecular weights of corn mitochondrial F1-ATPase were determined by SDS-polyacrylamide gel electrophoresis to be 58,000 (α), 55,000 (β), 35,000 (γ), 22,000 (δ), and 12,000 (ε). Monoclonal and polyclonal antibodies used in competitive binding assays demonstrated that corn mitochondrial F1-ATPase was antigenically distinct from the chloroplastic CF1-ATPases of corn and spinach. Monoclonal antibodies against antigenic sites on spinach CF1-ATPase β and γ subunits were used to demonstrate that those sites were either changed substantially or totally absent from the mitochondrial F1-ATPase.  相似文献   

7.
Randall SK  Wang Y  Sze H 《Plant physiology》1985,79(4):957-962
The properties of the soluble moiety (F1) of the mitochondrial H+-ATPase from oat roots were examined and compared to those of the native mitochondrial membrane-bound enzyme. The chloroform soluble preparation was purified by Sephadex G-200 and DEAE-cellulose chromatography. The purified F1 preparation contained major polypeptides corresponding to α, β, γ, δ, and ε of apparent molecular mass 58, 55, 35, 22, and 14 kilodaltons, respectively. The purified F1-ATPase, like the native enzyme, was inhibited by azide (I50 = 10 micromolar), nitrate (I50 = 7-10 millimolar), 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (I50 = 1-3 micromolar), and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (I50 = 3 micromolar). F1-ATPase activity was stimulated by bicarbonate but not by chloride. In both the native and the F1-form of the ATPase, ATP was hydrolyzed in preference to GTP. The results indicate that these properties of the native membrane-bound mitochondrial ATPase have been conserved in the purified F1. In contrast to the membrane-bound enzyme, the F1-ATPase was not inhibited by oligomycin or by N,N′-dicyclohexylcarbodiimide. The mitochondrial F1-ATPase from oat roots is analogous to other known F1F0-ATPases.  相似文献   

8.
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.  相似文献   

9.
In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells.  相似文献   

10.
F1-ATPase (F1) is an ATP-driven rotary motor in which the three catalytic β subunits in the stator ring sequentially induce the unidirectional rotation of the rotary γ subunit. Many lines of evidence have revealed open-to-closed conformational transitions in the β subunit that swing the C-terminal domain inward. This conformational transition causes a C-terminal protruding loop with conserved sequence DELSEED to push the γ subunit. Previous work, where all residues of DELSEED were substituted with glycine to disrupt the specific interaction with γ and introduce conformational flexibility, showed that F1 still rotated, but that the torque was halved, indicating a remarkable impact on torque transmission. In this study, we conducted a stall-and-release experiment on F1 with a glycine-substituted DELSEED loop to investigate the impact of the glycine substitution on torque transmission upon ATP binding and ATP hydrolysis. The mutant F1 showed a significantly reduced angle-dependent change in ATP affinity, whereas there was no change in the equilibrium for ATP hydrolysis. These findings indicate that the DELSEED loop is predominantly responsible for torque transmission upon ATP binding but not for that upon ATP hydrolysis.  相似文献   

11.
Four genomic arrangements of the maize mitochondrial atpA gene (encoding the α subunit of the F1 ATPase), have been characterized. Most N (fertile) and S (male-sterile) cytoplasms contain two atpA arrangements of equal abundance. Prolonged exposure of blots of maize mitochondrial DNA probed with atpA-specific sequences show that cytoplasms previously reported to lack one of the atpA arrangements do contain the second arrangement but at low levels. Similarly, restriction fragments containing the atpA gene previously thought unique to male-sterile S and T cytoplasms are present in low abundance in fertile cytoplasms. These observations suggest that fertile and male-sterile cytoplasms of maize may be more closely related than previously thought, and suggest possible mechanisms to explain the observed mitochondrial genome diversity.  相似文献   

12.
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.  相似文献   

13.
The central stalk of the ATP synthase is an elongated hetero-oligomeric structure providing a physical connection between the catalytic sites in F1 and the proton translocation channel in F0 for energy transduction between the two subdomains. The shape of the central stalk and relevance to energy coupling are essentially the same in ATP synthases from all forms of life, yet the protein composition of this domain changed during evolution of the mitochondrial enzyme from a two- to a three-subunit structure (γ, δ, ε). Whereas the mitochondrial γ- and δ-subunits are homologues of the bacterial central stalk proteins, the deliberate addition of subunit ε is poorly understood. Here we report that down-regulation of the gene (ATP15) encoding the ε-subunit rapidly leads to lethal F0-mediated proton leaks through the membrane because of the loss of stability of the ATP synthase. The ε-subunit is thus essential for oxidative phosphorylation. Moreover, mutations in F0 subunits a and c, which slow the proton translocation rate, are identified that prevent ε-deficient ATP synthases from dissipating the electrochemical potential. Cumulatively our data lead us to propose that the ε-subunit evolved to permit operation of the central stalk under the torque imposed at the normal speed of proton movement through mitochondrial F0.  相似文献   

14.
The F1F0-ATP synthase provides ∼90% of cardiac ATP, yet little is known regarding its regulation under normal or pathological conditions. Previously, we demonstrated that protein kinase Cδ (PKCδ) inhibits F1F0 activity via an interaction with the “d” subunit of F1F0-ATP synthase (dF1F0) in neonatal cardiac myocytes (NCMs) (Nguyen, T., Ogbi, M., and Johnson, J. A. (2008) J. Biol. Chem. 283, 29831–29840). We have now identified a dF1F0-derived peptide (NH2-2AGRKLALKTIDWVSF16-COOH) that inhibits PKCδ binding to dF1F0 in overlay assays. We have also identified a second dF1F0-derived peptide (NH2-111RVREYEKQLEKIKNMI126-COOH) that facilitates PKCδ binding to dF1F0. Incubation of NCMs with versions of these peptides containing HIV-Tat protein transduction and mammalian mitochondrial targeting sequences resulted in their delivery into mitochondria. Preincubation of NCMs, with 10 nm extracellular concentrations of the mitochondrially targeted PKCδ-dF1F0 interaction inhibitor, decreased 100 nm 4β-phorbol 12-myristate 13-acetate (4β-PMA)-induced co-immunoprecipitation of PKCδ with dF1F0 by 50 ± 15% and abolished the 30 nm 4β-PMA-induced inhibition of F1F0-ATPase activity. A scrambled sequence (inactive) peptide, which contained HIV-Tat and mitochondrial targeting sequences, was without effect. In contrast, the cell-permeable, mitochondrially targeted PKCδ-dF1F0 facilitator peptide by itself induced the PKCδ-dF1F0 co-immunoprecipitation and inhibited F1F0-ATPase activity. In in vitro PKC add-back experiments, the PKCδ-F1F0 inhibitor blocked PKCδ-mediated inhibition of F1F0-ATPase activity, whereas the facilitator induced inhibition. We have developed the first cell-permeable, mitochondrially targeted modulators of the PKCδ-dF1F0 interaction in NCMs. These novel peptides will improve our understanding of cardiac F1F0 regulation and may have potential as therapeutics to attenuate cardiac injury.  相似文献   

15.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.  相似文献   

16.
Escherichia coli atp mutants, which lack a functional H+-ATPase complex, are capable of growth on glucose but not on succinate or other C4-dicarboxylates (Suc phenotype). Suc+ revertants of an atp deletion strain were isolated which were capable of growth on succinate even though they lack the entire H+-ATPase complex. Complementation in trans with the yhiF gene suppressed the growth of the Suc+ mutants on succinate, which implicates the yhiF gene product in the regulation of C4-dicarboxylate metabolism. Indeed, when the E. coli C4-dicarboxylate transporter (encoded by the dctA gene) was expressed in trans, the Suc phenotype of the atp deletion strain reverted to Suc+, which shows that the reason why the E. coli atp mutant is unable to grow aerobically on C4-dicarboxylates is insufficient transport capacity for these substrates.  相似文献   

17.
Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058–42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer108 in loop 2 and ϵTyr114 in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.  相似文献   

18.
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.  相似文献   

19.
The mitochondrial DNA polymerase as a target of oxidative damage   总被引:16,自引:0,他引:16       下载免费PDF全文
The mitochondrial respiratory chain is a source of reactive oxygen species (ROS) that are responsible for oxidative modification of biomolecules, including proteins. Due to its association with mitochondrial DNA, DNA polymerase γ (pol γ) is in an environment to be oxidized by hydrogen peroxide and hydroxyl radicals that may be generated in the presence of iron ions associated with DNA. We tested whether human pol γ was a possible target of ROS with H2O2 and investigated the effect on the polymerase activities and DNA binding efficiency. A 1 h treatment with 250 µM H2O2 significantly inhibited DNA polymerase activity of the p140 subunit and lowered its DNA binding efficiency. Addition of p55 to the p140 catalytic subunit prior to H2O2 treatment offered protection from oxidative inactivation. Oxidatively modified amino acid residues in pol γ  resulting from H2O2 treatment were observed in vitro as well as in vivo, in SV40-transfected human fibroblasts. Pol γ was detected as one of the major oxidized mitochondrial matrix proteins, with a detectable decline in polymerase activity. These results suggest pol γ as a target of oxidative damage, which may result in a reduction in mitochondrial DNA replication and repair capacities.  相似文献   

20.
Mycoplasma mobile has a unique mechanism that enables it to glide on solid surfaces faster than any other gliding mycoplasma. To elucidate the gliding mechanism, we developed a transformation system for M. mobile based on a transposon derived from Tn4001. Modification of the electroporation conditions, outgrowth time, and colony formation from the standard method for Mycoplasma species enabled successful transformation. A fluorescent-protein tagging technique was developed using the enhanced yellow fluorescent protein (EYFP) and applied to two proteins that have been suggested to be involved in the gliding mechanism: P42 (MMOB1050), which is transcribed as continuous mRNA with other proteins essential for gliding, and a homolog of the F1-ATPase α-subunit (MMOB1660). Analysis of the amino acid sequence of P42 by PSI-BLAST suggested that P42 evolved from a common ancestor with FtsZ, the bacterial tubulin homologue. The roles of P42 and the F1-ATPase subunit homolog are discussed as part of our proposed gliding mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号