共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Well-defined ethyl cellulose-graft-poly(epsilon-caprolactone) (EC-g-PCL) graft copolymers were successfully synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) with an ethyl cellulose (EC) initiator and a tin 2-ethylhexanoate (Sn(Oct)2) catalyst in xylene at 120 degrees C. Then, novel ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) (EC-g-PCL-b-PLLA) graft-block copolymers were prepared by ROP of L-lactide (L-LA) with a hydroxyl-terminated EC-g-PCL macroinitiator and Sn(Oct)2 catalyst in bulk at 120 degrees C. Various graft and block lengths of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were obtained by adjusting the molar ratios of CL monomer to EC and the L-LA monomer to CL. The thermal properties and crystalline morphologies of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were different from those of linear PCL. The in vitro degradation rate of EC-g-PCL-b-PLLA was faster than those of linear PCL and EC-g-PCL due to the presence of PLLA blocks. 相似文献
3.
Novel chitosan-based graft copolymers (CECTS-g-PDMA) were synthesized through homogeneous graft copolymerization of (N,N-dimethylamino)ethyl methacrylate (DMA) onto N-carboxyethylchitosan (CECTS) in aqueous solution by using ammonium persulfate (APS) as the initiator. The effect of polymerization variables, including initiator concentration, monomer concentration, reaction time and temperature, on grafting percentage was studied. XRD, FTIR, DSC and TGA were used to characterize the graft copolymers. Surface-tension measurements, turbidity measurements and temperature-variable (1)H NMR analysis were combined to investigate the thermal sensitivity of CECTS-g-PDMAs in aqueous solution. 相似文献
4.
A variety of new polymers ranging from rubbery materials to tough and rigid plastics have been prepared by the thermal copolymerization of tung oil, styrene, and divinylbenzene. The thermal copolymerization is performed in the temperature range of 85-160 degrees C with variations in the stoichiometry, oxygen uptake, peroxides, and metallic catalysts used. Gelation of the reactants typically occurs at temperatures higher than 140 degrees C, and fully cured thermosets are obtained after post-curing at 160 degrees C. The fully cured thermosets are determined by Soxhlet extraction to contain approximately 90-100% cross-linked materials, and (1)H NMR and FTIR spectroscopy indicates that the cross-linked materials are random copolymers. The new bulk polymeric materials obtained are light yellow and transparent with glossy surfaces, and possess glass transition temperatures of -2 to +116 degrees C, cross-link densities of 1.0 x 10(3)-2.5 x 10(4) mol/m(3), coefficients of linear thermal expansion of 2.3 x 10(-4)-4.4 x 10(-4) per degrees C, compressive moduli of 0.02-1.12 GPa, and compressive strengths of 8-144 MPa. These materials are thermally stable below 300 degrees C and exhibit a major thermal degradation with a maximum degradation rate at 493-506 degrees C. 相似文献
5.
Rieger J Stoffelbach F Cui D Imberty A Lameignere E Putaux JL Jérôme R Jérôme C Auzély-Velty R 《Biomacromolecules》2007,8(9):2717-2725
A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ethylene oxide and epsilon-caprolactone, followed by the coupling of a reactive mannose derivative to the PEO chain end. The anionic polymerization of ethylene oxide was first initiated by potassium 2-dimethylaminoethanolate. The ring-opening polymerization of epsilon-caprolactone was then initiated by the omega-hydroxy end-group of PEO previously converted into an Al alkoxide. Finally, the saccharidic end-group was attached by quaternization of the tertiary amine alpha-end-group of the PEO-b-PCL with a brominated mannose derivative. The copolymer was fully characterized in terms of chemical composition and purity by high-resolution NMR spectroscopy and size exclusion chromatography. Furthermore, measurements with a pendant drop tensiometer showed that both the mannosylated copolymer and the non-mannosylated counterpart significantly decreased the dichloromethane/water interfacial tension. Moreover, these amphiphilic copolymers formed monodisperse spherical micelles in water with an average diameter of approximately 11 nm as measured by dynamic light scattering and cryo-transmission electron microscopy. The availability of mannose as a specific recognition site at the surface of the micelles was proved by isothermal titration microcalorimetry (ITC), using the BclA lectin (from Burkholderia cenocepacia), which interacts selectively with alpha-D-mannopyranoside derivatives. The thermodynamic parameters of the lectin/mannose interaction were extracted from the ITC data. These colloidal systems have great potential for drug targeting and vaccine delivery systems. 相似文献
6.
A series of copolymers with various compositions were synthesized by bulk ring-opening polymerization of glycolide and epsilon-caprolactone, using stannous (II) octoate or zirconium (IV) acetylacetonate as initiator. Reaction time and temperature were varied so as to induce different chain microstructures. The resulting copolymers were characterized by (1)H NMR, SEC, DSC, and X-ray diffraction. The average lengths of glycolyl (L(G)) and caproyl sequences (L(C)) and the degree of randomness (R) were calculated and compared to the values of completely random chains. The concentration of CGC sequences was also obtained which resulted from transesterification reactions. Data showed that stannous (II) octoate leads to less transesterification than zirconium (IV) acetylacetonate, and lower temperatures lead to less transesterification than higher ones. The copolymers exhibited a more or less blocky chain structure because of the reactivity difference between glycolide and epsilon-caprolactone. The crystalline structure and thermal properties depend on both the composition and the chain microstructure. PGA- and PCL-type crystallites were obtained for copolymers with intermediate compositions. 相似文献
7.
As part of the search of novel degradable polymers, amphiphilic and cationic poly(epsilon-caprolactone)-g-poly(l-lysine) (PCL-g-PlL) copolymers have been synthesized following a grafting "onto" or a grafting "from" method both applied to a macropolycarbanionic PCL derivative. The first approach led to PCL-g-PZlL containing 36% of epsilon-caprolactone and 64% of N-epsilon-Z-l-lysine units, by reaction of activated poly(N-epsilon-Z-l-lysine) on the macropolycarbanion derived from PCL. The second route was based on the anionic ring opening polymerization of N-carboxyanhydride of N-epsilon-benzyloxycarbonyl-l-lysine initiated by the macropolycarbanion derived from PCL and led to a similar copolymer containing 45% of of epsilon-caprolactone and 55% of N-epsilon-Z-l-lysine units. After deprotection of the lysine units, PCL-g-PlL copolymers were obtained. These copolymers are water-soluble and form nanometric micelle-like objects with mean diameters between 60 and 500 nm in distilled water depending on the synthesis route. 相似文献
8.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier. 相似文献
9.
Aminoethyl chitins (AEC) with different amino contents were synthesized from chitin and 2-chlorethylamine hydrochloride, and the AEC hydrogels were prepared by crosslinking with glutaraldehyde. The microstructures, swelling behaviors and antibacterial activities of the hydrogels were investigated. The results of Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) spectrum and scanning electron microscopy (SEM) showed that the hydrogels were prepared by forming the Schiff base from AEC and glutaraldehyde. The aminoethyl chitin hydrogels were sensitive to acidic environment. The swelling ratio changed with the amino content of AEC, declined with the increase of the crosslinking agent concentration and increased with the increase of the AEC concentration. In addition, the antibacterial results of the hydrogels against Staphylococcus aureus (S. aureus) indicated that the hydrogels had good antibacterial activities, and the antibacterial properties were affected by the amino content of AEC and the crosslinking agent concentration. 相似文献
10.
A series of biodegradable amphiphilic graft polymers were successfully synthesized by grafting poly(epsilon-caprolactone) (PCL) sequences onto a water-soluble poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA) backbone. The graft copolymers were prepared through the ring-opening polymerization of epsilon-caprolactone (CL) initiated by the macroinitiator PHEA with pendant hydroxyl groups without adding any catalyst. By controlling the feed ratio of the macroinitiator to the monomer, the copolymers with different branch lengths and properties can be obtained. The successful grafting of PCL sequences onto the PHEA backbone was verified by FTIR, 1H NMR, and combined size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS) analysis. The hydrolytic degradation and enzymatic degradation of these graft copolymers were investigated. The results show the hydrolytic degradation rate increases with increasing content of hydrophilic PHEA backbone. While the enzymatic degradation rate is affected by two competitive factors, the catalytic effect of Pseudomonas cepacia lipase on the degradation of PCL branches and the hydrophilicity which depends on the copolymer composition. In situ observation of the degradation under polarizing light microscope (PLM) demonstrates the different degradation rates of different regions in the polymer samples. 相似文献
11.
Xiu-Li Wang 《Carbohydrate research》2009,344(6):801-269
A new biodegradable copolymer of chitosan and poly(p-dioxanone) (PPDO) was prepared through a protection-graft-deprotection procedure using N-phthaloyl-chitosan as an intermediate. PPDO terminated with the isocyanate group was allowed to react with hydroxyl groups of the N-phthaloyl-protected chitosan, and then the phthaloyl group was cleaved to give the free amino groups. The length of PPDO graft chains can be controlled easily by using the prepolymers of PPDO with different molecular weights. The resulting products were thoroughly characterized with FT-IR, 1H NMR, TG, DSC, SEM, and WAXD. The copolymers were used as drug carriers for sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl-9α,13α,14α-morphinan-6-one) and these exhibited a significant controlled drug-releasing behavior whether in artificial gastric juice or in neutral phosphate buffer solution. 相似文献
12.
Poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers PEG-PCL were synthesized by ring-opening polymerization of epsilon-caprolactone using monomethoxy poly(ethylene glycol) as the macroinitiator and calcium ammoniate as the catalyst. Obvious mutual influence between PEG and PCL crystallization was studied by altering the relative block length. Fixing the length of the PEG block (Mn = 5000) and increasing the length of the PCL block, the crystallization temperature of the PCL block rose gradually from 1 to about 35 degrees C while that of the PEG block dropped from 36 to -6.6 degrees C. Meanwhile, the melting temperature of the PCL block went up from 30 to 60 degrees C, while that of the PEG block declined from 60 to 41 degrees C. If the PCL block was longer than the PEG block, the former would crystallize first when cooling from a molten state and led to obviously imperfect crystallization of PEG and vice versa. And they both crystallized at the same temperature, if their weight fractions were equal. We found that the PEG block could still crystallize at -6.6 degrees C even when its weight fraction is only 14%. A unique morphology of concentric spherulites was observed for PEG5000-PCL5000. According to their morphology and real-time growth rates, it is concluded that the central and outer sections in the concentric spherulites were PCL and PEG, respectively, and during the formation of the concentric spherulite, the PEG crystallized quickly from the free space of the PCL crystal at the earlier stage, followed by outgrowing from the PCL spherulites in the direction of right angles to the circle boundaries until the entire area was occupied. 相似文献
13.
Madhab Prasad Bajgai Daman Chandra Parajuli Jung An Ko Hyo Kyoung Kang Myung-Seob Khil Hak Yong Kim 《Carbohydrate polymers》2009,78(4):833-840
A novel biodegradable graft copolymer, dextran-g-poly(1,4-dioxan-2-one) (PODEX), was synthesized through the ring-opening polymerization (ROP) of 1,4-dioxan-2-one (PDO) onto a dextran backbone. Initially, dextran was silylated with 1,1,1,3,3,3-hexamethyldisilazane. The grafting from pathway was conducted with various (30–70) PDO/OH feed ratios to obtain PODEX copolymers with a various PPDO graft structures. Graft copolymers were characterized by FT-IR, 1H and 13C NMR, DSC, TGA, and WAXD. Molecular weights of the PODEX copolymers (MW: 94,700–117, 300 Da), glass transition temperature (−29 to −17 °C), melting temperature (82–100 °C), and crystallinity (32–40%) were increased with the content of PPDO. AFM observations revealed that polymeric micelles were spherical and uniform in morphology with around 30–58 nm diameter. Critical micelle concentration (CMC) of self-assembled system was significantly decreased from 3.2 to 1.09 mg/L with the increment of PPDO. 相似文献
14.
Water-soluble fullerene (C(60))-N-vinylpyrrolidone copolymers were prepared by the radical polymerization method. The structures of the copolymers were characterized by Fourier transform infrared, UV-Vis, (1)H NMR, (13)C NMR, gel permeation chromatography, thermogravimetric analyses, and scanning electron microscopy (SEM). The results presented show that C(60) and vinylpyrrolidone (VP) can be copolymerized under different conditions. With a constant benzoyl peroxide amount, C(60) contents in the copolymers increase with increasing initial C(60):VP reactant ratio. The assembly behavior of water-soluble C(60)-N-vinylpyrrolidone copolymers was investigated by SEM. The results show that the copolymers create morphology that is sphere-like. Fullerene-containing micro-/nano-sized copolymer fibers were prepared, for the first time, by electrospinning. The cytotoxicity to cancer cell lines of the copolymers was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and confocal laser scanning microscope. The results show that copolymers exhibit better cytotoxicity against HeLa cells and mouse osteogenic sarcoma cells (cytotoxicity of copolymers is better than that of fullerene complex). The mechanism of fullerene-VP copolymerization was investigated for the first time. 相似文献
15.
Block copolymers were prepared by ring-opening polymerization of epsilon-caprolactone in the presence of monohydroxyl or dihydroxyl poly(ethylene glycol) (PEG), using Zn powder as catalyst. The resulting poly(epsilon-caprolactone) (PCL)-PEG diblock and PCL-PEG-PCL triblock copolymers were characterized by various analytical techniques such as NMR, size-exclusion chromatography, differential scanning calorimetry, and X-ray diffraction. Both copolymers were semicrystalline polymers, the crystalline structure being of the PCL type. Films were prepared by casting dichloromethane solutions of the polymers on a glass plate. Square samples with dimensions of 10 x 10 mm were allowed to degrade in a pH = 7.0 phosphate buffer solution containing Pseudomonas lipase. Data showed that the introduction of PEG blocks did not decrease the degradation rate of poly(epsilon-caprolactone). 相似文献
16.
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening. 相似文献
17.
We report on the modulation of phase morphology, plasticization properties, and thermal stability of films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer (PLLA-co-PCL) with additions of low molecular weight compounds, namely, triethyl citrate ester, diethyl phthalate, diepoxy polyether (poly(propylene glycol) diglycidyl ether), and with epoxidized soybean oil (ESO). The PLLA-co-PCL/polyether films showed significant stability against thermal depolymerization, high film flexibility, and good plasticizing properties, probably due to cross-linking and chain branching formation between diepoxy groups with both the end carboxyl and hydroxyl groups of the PLLA copolymer (initially present or generated during the degradation process) to produce primary ester and ether bonds, respectively. Diethyl phthalate and triethyl citrate ester were found to be efficient plasticizers for PLLA copolymer in terms of glass transition and mechanical properties, but the more water-soluble plasticizer triethyl citrate induced a dramatic loss in the molecular weight of the copolymer. Although ESO cannot play the role of a plasticizer, it substantially stabilizes and retards thermal depolymerization of the PLLA copolymer matrix, possibly because of a reaction between epoxy groups with the end carboxyl and hydroxyl groups of the PLLA copolymer. The presence of ESO in PLLA-co-PCL/ESO/triethyl citrate blends enhanced the compatibility and miscibility of the plasticizer with the PLLA copolymer matrix, considerably improved the mechanical properties (elongation at break), and substantially stabilized the copolymer against thermal depolymerization. It seems likely that the epoxy groups interact not only with the end hydroxyl and carboxyl group of the copolymer but as well with the hydroxyl group of triethyl citrate plasticizer to produce a new ether bond (C-O-C) as the cross-linking unit. On the other hand, for PLLA-co-PCL/ESO/polyether blends, (80/10/10) epoxidized oil distorts the compactness of the blend by diminishing the proposed entanglements between carboxyl, hydroxyl, and diepoxy groups of polyether and reduces the high elongation properties otherwise observed in the PLLA-co-PCL/polyether films. The multicomponent approach toward modulating poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer films using epoxy compounds and plasticizers and the insight into the nature of various PLLA matrixes presented here offer advantages to a broad engineering of PLLA copolymer films having desirable physical properties and multiphase behavior for efficient uses in future technical applications. 相似文献
18.
A biodegradable two block copolymer, poly(epsilon-caprolactone)-b- poly(gamma-benzyl-L-glutamic acid) (PCL-PBLG) was synthesized successfully by ring-opening polymerization of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with aminophenyl-terminated PCL as a macroinitiator. The aminophenethoxyl-terminated PCL was prepared via hydrogenation of a 4-nitrophenethoxyl-terminated PCL, which was novelly obtained from the polymerization of epsilon-caprolactone (CL) initiated by amino calcium 4-nitrobenzoxide. The structures of the block copolymer and its precursors from the initial step of PCL were confirmed and investigated by 1H NMR, FT-IR, GPC, and FT-ICRMS analyses and DSC measurements. 相似文献
19.
Novel amphiphilic six-arm star diblock copolymers based on biocompatible and biodegradable poly(delta-valerolactone) (PVL) and methoxy poly(ethylene glycol) (MePEG) were synthesized by a two-step process. First, the hydrophobic star-shaped PVL with hydroxyl terminated functional groups was synthesized using a multifunctional alcohol, dipentaerythritol (DPE), as the initiator and fumaric acid as the catalyst. The amphiphilic six-arm star copolymer of poly(delta-valerolactone)-b-methoxy poly(ethylene glycol), (PVL-b-MePEG)(6), was then synthesized by coupling the hydroxyl terminated six-arm PVL homopolymer with alpha-methoxy-omega-chloroformate-poly(ethylene glycol) (MePEG-COCl). (1)H NMR and GPC analyses confirmed the successful synthesis of star-shaped copolymers with predicted compositions and narrow molecular weight distributions. DSC analysis revealed that the glass transition temperatures of the star PVL homopolymers with M(n) between 5000 and 49 000 are not dependent on their molecular weights, whereas the melting temperatures of both the PVL homopolymers and the amphiphilic (PVL-b-MePEG)(6) copolymers increase with an increase in the PVL molecular weight. Micelles were prepared from the (PVL-b-MePEG)(6) copolymers via the dialysis method and found to have effective mean diameters ranging from 10 to 45 nm, depending on the copolymer composition. In addition, the (PVL-b-MePEG)(6) copolymers having lower PVL content were found to form micelles with a narrow monomodal size distribution, whereas the copolymers having higher PVL content tended to form aggregates with a bimodal size distribution. The noncytotoxicity of the copolymers was also confirmed in CHO-K1 fibroblast cells using a cell viability assay, indicating that the (PVL-b-MePEG)(6) copolymers are suitable for biomedical applications such as drug delivery. 相似文献
20.
The cerium (III) glutathione complex was synthesized by the redox reaction of cerium (IV) with glutathione reduced (GSH) in aqueous solution. The Job‐plots indicate an ML (L = GSSG) stoichiometry of the complex. The fluorescent properties of the compound were investigated. The as‐prepared complex showed the characteristic maximum emission spectra of Ce(III) at 350 nm (λex = 255 nm). The fluorescence results show that the Ce(IV) ions are first reduced to Ce(III), and then form Ce(III) complex after reacting with GSH. The complex was characterized by element analysis and FT‐IR spectra; the stability of the complex was analyzed by cyclic voltammeters and DSC‐TG as well. Finally, Ce(IV) was successfully employed to determine the concentrations of GSH in the presence of GSSG, in which the fluorescence intensities are proportional to the concentrations of GSH in the range of 1–100 nM with the detection limit of 0.05 nM of GSH, without interference from the presence of GSSG. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献