首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous work, we identified a Saccharomyces cerevisiae glycogen synthase gene, GSY1, which codes for an 85-kDa polypeptide present in purified yeast glycogen synthase (Farkas, I., Hardy, T.A., DePaoli-Roach, A.A., and Roach, P.J. (1990) J. Biol. Chem. 265, 20879-20886). We have now cloned another gene, GSY2, which encodes a second S. cerevisiae glycogen synthase. The GSY2 sequence predicts a protein of 704 residues, molecular weight 79,963, with 80% identity to the protein encoded by GSY1. Amino acid sequences obtained from a second polypeptide of 77 kDa present in yeast glycogen synthase preparations matched those predicted by GSY2. GSY1 resides on chromosome VI, and GSY2 is located on chromosome XII. Disruption of the GSY1 gene produced a strain retaining about 85% of wild type glycogen synthase activity at stationary phase, while disruption of the GSY2 gene yielded a strain with only about 10% of wild type enzyme activity. The level of glycogen synthase activity in yeast cells disrupted for GSY1 increased in stationary phase, whereas the activity remained at a constant low level in cells disrupted for GSY2. Disruption of both genes resulted in a viable haploid that totally lacked glycogen synthase activity and was defective in glycogen deposition. In conclusion, yeast expresses two forms of glycogen synthase with activity levels that behave differently in the growth cycle. The GSY2 gene product appears to be the predominant glycogen synthase with activity linked to nutrient depletion.  相似文献   

2.
3.
GSY1 is one of the two genes encoding glycogen synthase in Saccharomyces cerevisiae. Both the GSY1 message and the protein levels increased as cells approached stationary phase. A combination of deletion analysis and site-directed mutagenesis revealed a complex promoter containing multiple positive and negative regulatory elements. Expression of GSY1 was dependent upon the presence of a TATA box and two stress response elements (STREs). Expression was repressed by Mig1, which mediates responses to glucose, and Rox1, which mediates responses to oxygen. Characterization of the GSY1 promoter also revealed a novel negative element. This element, N1, can repress expression driven by either an STRE or a heterologous element, the UAS of CYC1. Repression by N1 is dependent on the number of these elements that are present, but is independent of their orientation. N1 repressed expression when placed either upstream or downstream of the UAS, although the latter position is more effective. Gel shift analysis detected a factor that appears to bind to the N1 element. The complexity of the GSY1 promoter, which includes two STREs and three distinct negative elements, was surprising. This complexity may allow GSY1 to respond to a wide range of environmental stresses.  相似文献   

4.
We used metabolic engineering to produce wine yeasts with enhanced resistance to glucose deprivation conditions. Glycogen metabolism was genetically modified to overproduce glycogen by increasing the glycogen synthase activity and eliminating glycogen phosphorylase activity. All of the modified strains had a higher glycogen content at the stationary phase, but accumulation was still regulated during growth. Strains lacking GPH1, which encodes glycogen phosphorylase, are unable to mobilize glycogen. Enhanced viability under glucose deprivation conditions occurs when glycogen accumulates in the strain that overexpresses GSY2, which encodes glycogen synthase and maintains normal glycogen phosphorylase activity. This enhanced viability is observed under laboratory growth conditions and under vinification conditions in synthetic and natural musts. Wines obtained from this modified strain and from the parental wild-type strain don't differ significantly in the analyzed enological parameters. The engineered strain might better resist some stages of nutrient depletion during industrial use.  相似文献   

5.
Glycogen synthase preparations from Saccharomyces cerevisiae contained two polypeptides of molecular weights 85,000 and 77,000. Oligonucleotides based on protein sequence were utilized to clone a S. cerevisiae glycogen synthase gene, GSY1. The gene would encode a protein of 707 residues, molecular mass 80,501 daltons, with 50% overall identity to mammalian muscle glycogen synthases. The amino-terminal sequence obtained from the 85,000-dalton species matched the NH2 terminus predicted by the GSY1 sequence. Disruption of the GSY1 gene resulted in a viable haploid with glycogen synthase activity, and purification of glycogen synthase from this mutant strain resulted in an enzyme that contained the 77,000-dalton polypeptide. Southern hybridization of genomic DNA using the GSY1 coding sequence as a probe revealed a second weakly hybridizing fragment, present also in the strain with the GSY1 gene disrupted. However, the sequences of several tryptic peptides derived from the 77,000-dalton polypeptide were identical or similar to the sequence predicted by the GSY1 gene. The data are explained if S. cerevisiae has two glycogen synthase genes encoding proteins with significant sequence similarity The protein sequence predicted by the GSY1 gene lacks the extreme NH2-terminal phosphorylation sites of the mammalian enzymes. The COOH-terminal phosphorylated region of the mammalian enzyme over-all displayed low identity to the yeast COOH terminus, but there was homology in the region of the mammalian phosphorylation sites 3 and 4. Three potential cyclic AMP-dependent protein kinase sites are located in this region of the yeast enzyme. The region of glycogen synthase likely to be involved in covalent regulation are thus more variable than the catalytic center of the molecule.  相似文献   

6.
7.
The AMP-activated protein kinase (AMPK) is an important metabolic sensor/effector that coordinates many of the changes in mammalian tissues during variations in energy availability. We have sought to create an in vivo genetic model of chronic AMPK activation, selecting murine skeletal muscle as a representative tissue where AMPK plays important roles. Muscle-selective expression of a mutant noncatalytic gamma1 subunit (R70Qgamma) of AMPK activates AMPK and increases muscle glycogen content. The increase in glycogen content requires the presence of the endogenous AMPK catalytic alpha-subunit, since the offspring of cross-breeding of these mice with mice expressing a dominant negative AMPKalpha subunit have normal glycogen content. In R70Qgamma1-expressing mice, there is a small, but significant, increase in muscle glycogen synthase (GSY) activity associated with an increase in the muscle expression of the liver isoform GSY2. The increase in glycogen content is accompanied, as might be expected, by an increase in exercise capacity. Transgene expression of this mutant AMPKgamma1 subunit may provide a useful model for the chronic activation of AMPK in other tissues to clarify its multiple roles in the regulation of metabolism and other physiological processes.  相似文献   

8.
A yeast glc7-1 mutant expressing a variant of protein phosphatase type 1 fails to accumulate glycogen. This defect is associated with hyperphosphorylated and inactive glycogen synthase, consistent with Glc7p acting directly to dephosphorylate and activate glycogen synthase. To characterize the glycogen synthesis defect of this mutant in more detail, we isolated 26 pseudorevertants of the glc7-1 mutant. All pseudoreversion events were due to missense mutations in GSY2, the gene encoding the major isoform of glycogen synthase. A majority of the mutations responsible for the suppression were in the 3' end of the gene, corresponding to the phosphorylated COOH terminus of Gsy2p. Phosphorylation of the mutant proteins was reduced, suggesting that they are poor substrates for glycogen synthase kinases. Suppressor mutations outside this domain did not decrease the phosphorylation of the resulting proteins, indicating that these proteins are immune to the regulatory effects of phosphorylation. Since no growth defect has been observed for strains with altered glycogen levels, the relative levels of fitness of GSY2 mutants that fail to accumulate glycogen and that hyperaccumulate glycogen were assayed by cocultivation experiments. A wild-type strain outcompeted both hypo- and hyperaccumulating strains, suggesting that glycogen levels contribute substantially to the fitness of yeast.  相似文献   

9.
Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAPamypgm genes. Expression of the glg operon and glycogen accumulation were carbon source‐ and growth phase‐dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log‐phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose‐grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen‐branching enzyme) mutants are glycogen‐deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus.  相似文献   

10.
We used metabolic engineering to produce wine yeasts with enhanced resistance to glucose deprivation conditions. Glycogen metabolism was genetically modified to overproduce glycogen by increasing the glycogen synthase activity and eliminating glycogen phosphorylase activity. All of the modified strains had a higher glycogen content at the stationary phase, but accumulation was still regulated during growth. Strains lacking GPH1, which encodes glycogen phosphorylase, are unable to mobilize glycogen. Enhanced viability under glucose deprivation conditions occurs when glycogen accumulates in the strain that overexpresses GSY2, which encodes glycogen synthase and maintains normal glycogen phosphorylase activity. This enhanced viability is observed under laboratory growth conditions and under vinification conditions in synthetic and natural musts. Wines obtained from this modified strain and from the parental wild-type strain don't differ significantly in the analyzed enological parameters. The engineered strain might better resist some stages of nutrient depletion during industrial use.  相似文献   

11.
This study, using 13C nuclear magnetic resonance spectroscopy showed enrichment of glycogen carbon (C1) from 13C-labelled (C1) glucose indicating a direct pathway for glycogen synthesis from glucose in rainbow trout (Oncorhynchus mykiss) hepatocytes. There was a direct relationship between hepatocyte glycogen content and total glycogen synthase, total glycogen phosphorylase and glycogen phosphorylase a activities, whereas the relationship was inverse between glycogen content and % glycogen synthase a and glycogen synthase a/glycogen phosphorylase a ratio. Incubation of hepatocytes with glucose (3 or 10 mmol·1-1) did not modify either glycogen synthase or glycogen phosphorylase activities. Insulin (porcine, 10-8 mol·1-1) in the medium significantly decreased total glycogen phosphorylase and glycogen phosphorylase a activities, but had no significant effect on glycogen synthase activities when compared to the controls (absence of insulin). In the presence of 10 mmol·1-1 glucose, insulin increased % glycogen synthase a and decreased % glycogen phosphorylase a activities in trout hepatocytes. Also, the effect of insulin on the activities of % glycogen synthase a and glycogen synthase a/glycogen phosphorylase a ratio were more pronounced at low than at high hepatocyte glycogen content. The results indicate that in trout hepatocytes both the glycogen synthetic and breakdown pathways are active concurrently in vitro and any subtle alterations in the phosphorylase to synthase ratio may determine the hepatic glycogen content. Insulin plays an important role in the regulation of glycogen metabolism in rainbow trout hepatocytes. The effect of insulin on hepatocyte glycogen content may be under the control of several factors, including plasma glucose concentration and hepatocyte glycogen content.  相似文献   

12.
During transition into stationary phase a large set of proteins is induced in Escherichia coli. Only a minority of the corresponding genes has been identified so far. Using the λplacMu system and a plate screen for carbon starvation-induced fusion activity, a series of chromosomal lacZ fusions (csi::lacZ) was isolated. In complex medium these fusions were induced either during late exponential phase or during entry into stationary phase. csi::lacZ expression in minimal media in response to starvation for carbon, nitrogen and phosphate sources and the roles of global regulators such as the alternative sigma factor sigma;S (encoded by rpoS), cAMP/CRP and the relA gene product were investigated. The results show that almost every fusion exhibits its own characteristic pattern of expression, suggesting a complex control of stationary phase-inducible genes that involves various combinations of regulatory mechanisms for different genes. All fusions were mapped to the E. coli chromosome. Using fine mapping by Southern hybridization, cloning, sequencing and/or phenotypic analysis, csi-5, csi-17, and csi-18 could be localized in osmY (encoding a periplasmic protein), glpD (aerobic glycerol-3-phosphate dehydrogenase) and glgA (glycogen synthase), respectively. The other fusions seem to specify novel genes now designated csiA through to csiF. csi-17(glpD)::lacZ was shown to produce its own glucose-starvation induction, thus illustrating the Intricacies of gene-fusion technology when applied to the study of gene regulation.  相似文献   

13.
Glycogen synthase is post-translationally modified by both phosphate and O-linked N-acetylglucosamine (O-GlcNAc). In 3T3-L1 adipocytes exposed to high concentrations of glucose, O-GlcNAc contributes to insulin resistance of glycogen synthase. We sought to determine whether O-GlcNAc also regulates glycogen synthase in vivo. Glycogen synthase activity in fat pad extracts was inhibited in streptozotocin (STZ)-treated diabetic mice. The half-maximal activation concentration for glucose 6-phosphate (A(0.5)) was increased to 830 +/- 120 microm compared with 240 +/- 20 microm in control mice (C, p < 0.01), while the basal glycogen synthase activity (%I-form) was decreased to 2.4 +/- 1.4% compared with 10.1 +/- 1.8% in controls (p < 0.01). Glycogen synthase activity remained inhibited after compensatory insulin treatment. After insulin treatment kinetic parameters of glycogen synthase were more closely correlated with blood glucose (A(0.5), r(2) = 0.70; %I-form, r(2) = 0.59) than insulin levels (A(0.5), r(2) = 0.04; %I-form, r(2) = 0.09). Hyperglycemia also resulted in an increase in the level of O-GlcNAc on glycogen synthase (16.1 +/- 1.8 compared with 7.0 +/- 0.9 arbitrary intensity units for controls, p < 0.01), even though the level of phosphorylation was identical in diabetic and control mice either with (STZ: 2.9 +/- 1.0 and C: 3.2 +/- 0.8) or without (STZ: 12.2 +/- 2.8 and C: 13.8 +/- 3.0 arbitrary intensity units) insulin treatment. In all mice the percent activation of glycogen synthase that could be achieved in vitro by recombinant protein phosphatase 1 (230 +/- 30%) was significantly greater in the presence of beta-d-N-acetylglucosaminidase (410 +/- 60%, p < 0.01). This synergistic stimulation of glycogen synthase due to codigestion by protein phosphatase 1 and beta-d-N-acetylglucosaminidase was more pronounced in STZ-diabetic mice (310 +/- 70%) compared with control mice (100 +/- 10%, p < 0.05). The findings demonstrate that O-GlcNAc has a role in the regulation of glycogen synthase both in normoglycemia and diabetes.  相似文献   

14.
During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench‐top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20–24, 2015  相似文献   

15.
Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing 13C labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.  相似文献   

16.
17.
The nucleotide sequence (1579 bp) of tetracycline-resistance determinant and flanking regions of the cloned 5.1 kb DNA fragment from Bacillus subtilis GSY908 chromosome (Sakaguchi, R. and Shishido, K. (1988) Biochim. Biophys. Acta 949, 49–57) were determined and compared with those of the B. subtilis tetracycline-resistance plasmid pNS1981. The tetracycline-resistance structural (tet) genes of the B. subtilis GSY908 chromosome (tet BS908) and pNS1981 (tet pNS1981) were found to be highly homologous (80% identical). Both tet genes were composed of 1374 bp and 458 amino-acid residues initiating from a GTG codon preceded by a ribosome-binding site (RBS-2). Upstream from tet BS908 there exists a short open reading frame (20 amino acids) initiating from a ATG codon preceded by its own RBS (RBS-1). This leader sequence was also highly homologous to that of tet pNS1981 except for a deletion of one bp between the RBS-1 and the ATG codon.  相似文献   

18.
The effect of insulin on glycogen synthesis and key enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase, was studied in HepG2 cells. Insulin stimulated glycogen synthesis 1.83-3.30 fold depending on insulin concentration in the medium. Insulin caused a maximum of 65% decrease in glycogen phosphorylase 'a' and 110% increase in glycogen synthase activities in 5 min. Although significant changes in enzyme activities were observed with as low as 0.5 nM insulin level, the maximum effects were observed with 100 nM insulin. There was a significant inverse correlation between activities of glycogen phosphorylase 'a' and glycogen synthase 'a' (R2 = 0.66, p < 0.001). Addition of 30 mM glucose caused a decrease in phosphorylase 'a' activity in the absence of insulin and this effect was additive with insulin up to 10 nM concentration. The inactivation of phosphorylase 'a' by insulin was prevented by wortmannin and rapamycin but not by PD98059. The activation of glycogen synthase by insulin was prevented by wortmannin but not by PD98059 or rapamycin. In fact, PD98059 slightly stimulated glycogen synthase activation by insulin. Under these experimental conditions, insulin decreased glycogen synthase kinase-3 activity by 30-50% and activated more than 4-fold particulate protein phosphatase-1 activity and 1.9-fold protein kinase B activity; changes in all of these enzyme activities were abolished by wortmannin. The inactivation of GSK-3 and activation of PKB by insulin were associated with their phosphorylation and this was also reversed by wortmannin. The addition of protein phosphatase-1 inhibitors, okadaic acid and calyculin A, completely abolished the effects of insulin on both enzymes. These data suggest that stimulation of glycogen synthase by insulin in HepG2 cells is mediated through the PI-3 kinase pathway by activating PKB and PP-1G and inactivating GSK-3. On the other hand, inactivation of phosphorylase by insulin is mediated through the PI-3 kinase pathway involving a rapamycin-sensitive p70s6k and PP-1G. These experiments demonstrate that insulin regulates glycogen phosphorylase and glycogen synthase through (i) a common signaling pathway at least up to PI-3 kinase and bifurcates downstream and (ii) that PP-1 activity is essential for the effect of insulin.  相似文献   

19.
目的:比较青年小鼠和老年小鼠不同脑区糖原及其代谢的差异,为后续相关研究奠定基础。方法:分别取雄性C57BL/6J青年小鼠(8周龄)和老年小鼠(18月龄)皮层、海马、纹状体三个脑区脑组织,通过糖原定量试剂盒检测糖原含量,通过Western Blot检测糖原代谢相关酶(包括糖原合成、糖原分解、葡萄糖转运、乳酸转运相关酶类)的表达水平。结果:与青年小鼠相比,老年小鼠皮层、纹状体糖原含量明显上升,但海马的糖原含量无明显变化。在糖原合成代谢的关键酶中,糖原合成酶在老年小鼠皮层、纹状体的表达水平明显升高,而海马区则无明显差异;糖原分支酶在老年小鼠皮层的表达水平有所下降,在海马和纹状体则无明显变化。在糖原分解代谢的关键酶中,老年小鼠的糖原磷酸化酶在皮层、海马和纹状体均明显升高,而糖原脱支酶在上述脑区则无明显变化。葡萄糖转运体1的表达水平在老年小鼠与青年小鼠各脑区无显著差异。在单羧酸转运体中,老年小鼠单羧酸转运体1在各脑区均明显上升,单羧酸转运体4在皮层明显升高,其余脑区则无明显差异。结论:老年小鼠脑内糖原含量总体上较青年小鼠高,老年小鼠脑糖原代谢通路相关酶的表达与青年小鼠存在明显差异,且不同脑区之间存在异质性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号