首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1H, 15N and 13C chemical shift assignments are presented for the N-terminal region of human La protein, in the apo and 5′-UUUU RNA-bound state. Secondary structure analysis shows conformational changes in the interdomain linker upon complex formation.  相似文献   

2.
3.
The feasibility of using two-bond 15N-1H couplings to resolve the 1H-1H nuclear Overhauser effect spectrum of RNA into a third dimension was investigated, using the 36-nucleotide gene 32 messenger RNA pseudoknot of bacteriophage T2 as an example. The two-bond 15N-1H couplings present in adenosine and guanosine were found to be suitable for generating a three-dimensional 1H-1H-15N NOESY-HSQC spectrum with reasonably good sensitivity, as well as favorable chemical shift dispersion in the nitrogen dimension. The described NMR experiment provides a tool that can be used to complement other heteronuclear methods in the analysis of RNA structure.  相似文献   

4.
Summary An algorithm based on the technique of combinatorial minimization is used for the semi-automated assignment of multidimensional heteronuclear spectra. The program (ALFA) produces the best assignment compatible with the available input data. Even partially misleading or missing data do not seriously corrupt the final assignment. Ambiguous sequences of the possible assignment and all alternatives are indicated. The program can also use additional non-spectroscopic data to assist in the assignment procedure. For example, information from the X-ray structure of the protein and/or information about the secondary structure can be used. The assignment procedure was tested on spectra of mucous trypsin inhibitor, a protein of 107 residues.  相似文献   

5.
A novel NMR pulse sequence has been developed that correlates the H2 resonances with the C2 and the N1 (N3) resonances in adenine nucleobases of 13C, 15N labeled oligonucleotides. The pulse scheme of the new 3D-HNHC experiment is composed of a 2J-15N-HSQC and a 1J-13C-HSQC and utilizes large 2J(H2, N1(N3)) and 1J(H2, C2) couplings. The experiment was applied to a medium-size 13C, 15N-labeled 36mer RNA. It is useful to resolve assignment ambiguities occurring especially in larger RNA molecules due to resonance overlap in the 1H-dimension. Therefore, the missing link in correlating the imino H3 resonances of the uracils across the AU base pair to the H8 resonances of the adenines via the novel pulse sequence and the TROSY relayed HCCH-COSY (Simon et al. in J Biomol NMR 20:173–176 2001) is provided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Summary A suite of computer programs (CLAIRE) is described which can be of assistance in the process of assigning 2D1H NMR spectra of proteins. The programs embody a software implementation of the sequential assignment approach first developed by Wüthrich and co-workers (K. Wüthrich. G. Wider, G. Wagner and W. Braun (1982)J. Mol. Biol. 155, 311). After data-abstraction (peakpicking), the software can be used to detect patterns (spin systems), to find cross peaks between patterns in 2D NOE data sets and to generate assignments that are consistent with all available data and which satisfy a number of constraints imposed by the user. An interactive graphics program calledCONPAT is used to control the entire assignment process as well as to provide the essential feedback from the experimental NMR spectra. The algorithms are described in detail and the approach is demonstrated on a set of spectra from the mistletoe protein phoratoxin B, a homolog of crambin. The results obtained compare well with those reported earlier based entirely on a manual assignment process.  相似文献   

7.
We report the NMR assignment of the PN2-3 subdomain of the CPAP protein. It has been previously shown that this motif interacts with tubulin, inhibits microtubule nucleation from the centrosome and depolymerizes taxol-stabilized microtubules. Marie-Jeanne Clément and Philippe Savarin contributed equally.  相似文献   

8.
Summary Peptide-water interactions of a ribonuclease C-peptide analogue, RN-24 (Suc-AETAAAKFLRAHA-NH2), which exhibits significant helicity, have been studied in solution using homonuclear 2D and 3D NMR cross-relaxation experiments. Dipolar peptide proton-water proton interactions are indicated by a large number of NOESY-type cross peaks at the H2O resonance frequency, most of them with opposite sign relative to the diagonal. Some cross peaks arise from intrapeptide cross relaxation to labile protons of histidine, threonine, lysine and arginine side chains. The observed peptide-water interactions are rather uniformly distributed, involving peptide backbone and side chains equally. The data are consistent with rapid fluctuations of the conformational ensemble and the absence of peptide regions that are highly shielded from bulk solvent, even in a peptide that exhibits high propensities for formation of helical secondary structure.  相似文献   

9.
10.
Human heterogeneous nuclear ribonucleoprotein H (hnRNP H) regulates alternative splicing of HIV-1 Tat pre-mRNA. The structure of the first N-terminal domain (residues 1–104) of hnRNP H was solved and its binding to an exonic splicing silencer (pESS2) studied. For this, all backbone and 85% of side-chain resonance frequencies were assigned.  相似文献   

11.
We report nearly complete assignment for all 1H, 13C, 31P, and 15N resonances in the 30-nucleotide stem-loop HIV-2 TAR RNA located at the 5′ end of all viral mRNAs.  相似文献   

12.
The new NMR experiments 3D H2BC and clean HMBC are explored for challenging applications to a complex carbohydrate at natural abundance of 13C. The 3D H2BC experiment is crucial for sequential assignment as it yields heteronuclear one- and two-bond together with COSY correlations for the 1H spins, all in a single spectrum with good resolution and non-informative diagonal-type peaks suppressed. Clean HMBC is a remedy for the ubiquitous problem of strong coupling induced one-bond correlation artifacts in HMBC spectra of carbohydrates. Both experiments work well for one of the largest carbohydrates whose structure has been determined by NMR, not least due to the enhanced resolution offered by the third dimension in 3D H2BC and the improved spectral quality due to artifact suppression in clean HMBC. Hence these new experiments set the scene to take advantage of the sensitivity boost achieved by the latest generation of cold probes for NMR structure determination of even larger and more complex carbohydrates in solution.  相似文献   

13.
Summary Two-dimensional sequence-specific1H NMR resonance assignment methodology (Wüthrich, 1986) has been applied for the first time to a 18-kDa paramagnetic hemoprotein (cyano-metAplysia Mb) to identify all the hyperfine-shifted residues. The assignment was greatly facilitated by the fact that hyperfine shifts of residues impart a strong temperature dependence to the cross peaks, which aids location and identification, and provides improved spectral dispersion, particularly in the fingerprint region. 2D COSY and TOCSY were found to be surprisingly effective in locating the complete spin connectivities of all of the hyperfine-shifted residues, with the exception of the axially coordinated His95 imidazole ring, whose proton resonances were found to exhibit severe line broadening (> 400 Hz). Conventional 1D NOE and NOESY with short mixing times, combined with paramagnetic-induced relaxation effects, led to the successful assignment of even extremely broad proton signals. Three helical stretches and two loop regions were identified as the source of all hyperfine-shifted residues: the F helical residues 3–9, the E-helix residues 6–14, the G-helix residues 5–9, the FG-loop residues 1–4 and the CD-loop residues 1–4. These segments comprise all the residues that make contact with the heme and modulate the reactivity of the prosthetic group. The sequence-specific identifications of the active-site residues revealed that the solution structure ofAplysia metMbCN is fully consistent with that observed by X-ray diffraction in single crystals for a variety of other derivatives, except for the distal Arg66 (E10), which is turned into the heme pocket, as found only in the metMbF crystal structure (Bolognesi et al., 1990). The ready identification, by their temperature sensitivity, and the complete assignments of all hyperfine-shifted residues ofAplysia metMbCN demonstrate that sequence-specific assignment can be profitably applied to paramagnetic proteins, and that it should be possible to determine the solution structures of paramagnetic proteins, at least for low-spin complexes, by using NMR techniques used for diamagnetic proteins.  相似文献   

14.
A new 3D HCCH-COSY-TOCSY experiment is presented for the assignment of RNA sugar and protein side chains. The experiment, which combines COSY and TOCSY units, is more powerful than the sum of individual HCCH-COSY and HCCH-TOCSY pulse sequences. The experiment was applied to a 13C, 15N-labeled 26 mer RNA complexed with the antibiotic tobramycin, and a 12 kDa 13C, 15N-labeled FKBP12 protein sample. The power of HCCH-COSY-TOCSY is demonstrated through complete spin system assignments of sugars in the 26 mer RNA sample, which could not be assigned using a combination of HCCH-COSY, HCCH-TOCSY and 13C-edited NOESY experiments.  相似文献   

15.
The first isolation of a trachylobane from an African specimen of Psiadia punctulata (Asteraceae) is presented in this paper. A complete 1H and 13C NMR spectral analysis of this compound and two other trachylobane diterpenes, previously isolated from the same plant, are also provided. The use of NMR techniques such as gCOSY, gHSQC, gHMBC and 2D-J-resolved, in combination with a software-assisted methodology, led to a complete and unequivocal assignment of 1H and 13C signals. This was achieved together with the measurement of all homonuclear hydrogen coupling constants. The presented detail level of the assignment data has never been published before for trachylobanes. Furthermore, with all determined NMR experimental data from the spectra and to obtain a reliability assessment, signals were simulated in the FOMSC3 and NMR_MultSim software.  相似文献   

16.
The family of CRP proteins comprises three members, which are composed of two LIM domains separated by a long linker of more than 50 residues. We determined the structure of the muscle variant, MLP (CRP3), by nuclear magnetic resonance and show that the two LIM domains are independent of each other.  相似文献   

17.
18.
A new TROSY relayed HCCH-COSY pulse sequence is introduced for correlating adenine H2 and H8 resonances in 13C-labeled RNA molecules. The pulse scheme provides substantial improvements in signal-to-noise compared to previously suggested experiments, and therefore will be suitable for NMR studies of larger RNA molecules. The experiment provides 13C chemical shifts for all carbon nuclei in the adenine base. This is advantageous for resolving spectral overlap in larger RNA molecules and provides a starting point for measuring additional parameters for these carbons in the adenine spin system.  相似文献   

19.
20.
A new program, Mapper, for semiautomatic sequence-specific NMR assignment in proteins is introduced. The program uses an input of short fragments of sequentially neighboring residues, which have been assembled based on sequential NMR connectivities and for which either the 13C and 13C chemical shifts or data on the amino acid type from other sources are known. Mapper then performs an exhaustive search for self-consistent simultaneous mappings of all these fragments onto the protein sequence. Compared to using only the individual mappings of the spectroscopically connected fragments, the global mapping adds a powerful new constraint, which results in resolving many otherwise intractable ambiguities. In an initial application, virtually complete sequence-specific assignments were obtained for a 110 kDa homooctameric protein, 7,8-dihydroneopterin aldolase from Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号