首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The retrovirus restriction factor TRIM5alpha targets the viral capsid soon after entry. Here we show that the TRIM5alpha protein oligomerizes into trimers. The TRIM5alpha coiled-coil and B30.2(SPRY) domains make important contributions to the formation and/or stability of the trimers. A functionally defective TRIM5alpha mutant with the RING and B-box 2 domains deleted can form heterotrimers with wild-type TRIM5alpha, accounting for the observed dominant-negative activity of the mutant protein. Trimerization potentially allows TRIM5alpha to interact with threefold pseudosymmetrical structures on retroviral capsids.  相似文献   

2.
3.
The innate antiviral factor TRIM5alpha restricts the replication of some retroviruses through its interaction with the viral capsid protein, leading to abortive infection. While overexpression of human TRIM5alpha results in modest restriction of human immunodeficiency virus type 1 (HIV-1), this inhibition is insufficient to block productive infection of human cells. We hypothesized that polymorphisms within TRIM5 may result in increased restriction of HIV-1 infection. We sequenced the TRIM5 gene (excluding exon 5) and the 4.8-kb 5' putative regulatory region in genomic DNA from 110 HIV-1-infected subjects and 96 exposed seronegative persons, along with targeted gene sequencing in a further 30 HIV-1-infected individuals. Forty-eight single nucleotide polymorphisms (SNPs), including 20 with allele frequencies of >1.0%, were identified. Among these were two synonymous and eight nonsynonymous coding polymorphisms. We observed no association between TRIM5 polymorphism in HIV-1-infected subjects and their set-point viral load after acute infection, although one TRIM5 haplotype was weakly associated with more rapid CD4(+) T-cell loss. Importantly, a TRIM5 haplotype containing the nonsynonymous SNP R136Q showed increased frequency among HIV-1-infected subjects relative to exposed seronegative persons, with an odds ratio of 5.49 (95% confidence interval = 1.83 to 16.45; P = 0.002). Nonetheless, we observed no effect of individual TRIM5alpha nonsynonymous mutations on the in vitro HIV-1 susceptibility of CD4(+) T cells. Therefore, any effect of TRIM5alpha polymorphism on HIV-1 infection in primary lymphocytes may depend on combinations of SNPs or on DNA sequences in linkage disequilibrium with the TRIM5alpha coding sequence.  相似文献   

4.
Primate lentiviruses have narrow host ranges, due in part to their sensitivities to mammalian intracellular antiviral factors such as APOBEC3G and TRIM5alpha. Despite the protection provided by this innate immune system, retroviruses are able to transfer between species where they can cause disease. This is true for sooty mangabey simian immunodeficiency virus, which has transferred to humans as HIV-2 and to rhesus macaques as SIVmac, where it causes AIDS. Here we examine the sensitivities of the closely related HIV-2 and SIVmac to restriction by TRIM5alpha. We show that rhesus TRIM5alpha can restrict HIV-2 but not the closely related SIVmac. SIVmac has not completely escaped TRIM5alpha, as shown by its sensitivity to distantly related TRIM5alpha from the New World squirrel monkey. Squirrel monkey TRIM5alpha blocks SIVmac infection after DNA synthesis and is not saturable with restriction-sensitive virus-like particles. We map the determinant for TRIM5alpha sensitivity to the structure in the capsid protein that recruits CypA into HIV-1 virions. We also make an SIV, mutated at this site, which bypasses restriction in all cells tested.  相似文献   

5.
Rhesus TRIM5α (rhTRIM5α), but not human TRIM5α (huTRIM5α), potently inhibits human immunodeficiency virus (HIV) infection and is thus a potentially valuable therapeutic tool. Primary human CD4 T cells engineered to express rhTRIM5α were highly resistant to cell-free HIV type 1 (HIV-1) infection. However, when cocultured with unmodified T cells, rhTRIM5α-expressing cells became highly permissive to HIV-1 infection. Physical separation of rhTRIM5α-expressing cells and unmodified cells revealed that rhTRIM5α efficiently restricts cell-free but not cell-associated HIV transmission. Furthermore, we observed that HIV-infected human cells could infect rhesus CD4 T cells by cell-to-cell contact, but the infection was self-limiting. Subsequently, we noted that a spreading infection ensued when HIV-1-infected rhTRIM5α-expressing human cells were cultured with huTRIM5α- but not rhTRIM5α-expressing cells. Our results suggest that cell-associated HIV transmission in humans is blocked only when both donor and recipient cells express rhTRIM5α. These studies further define the role of rhTRIM5α in cell-free and cell-associated HIV transmission and delineate the utility of rhTRIM5α in anti-HIV therapy.  相似文献   

6.
7.
8.
9.
Recent studies have revealed the contribution of TRIM5alpha to retrovirus restriction in cells from a variety of primate species. TRIM5alpha consists of a tripartite motif (the RBCC domain) followed by a B30.2 domain. The B30.2 domain is thought to be involved in determination of restriction specificity and contains three variable regions. To investigate the relationship between the phylogeny of primate TRIM5alpha and retrovirus restriction specificity, a series of chimeric TRIM5alpha consisting of the human RBCC domain followed by the B30.2 domain from various primates was constructed. These constructs showed restriction profiles largely consistent with the origin of the B30.2 domain. Restriction specificity was further investigated with a variety of TRIM5alphas containing mixed or mutated B30.2 domains. This study revealed the importance of all three variable regions for determining restriction specificity. Based on the molecular structures of other PRYSPRY domains solved recently, a model for the molecular structure of the B30.2 domain of TRIM5alpha was developed. The model revealed that the variable regions of the B30.2 domain are present as loops located on one side of the B30.2 core structure. It is hypothesized that these three loops form a binding surface for virus and that evolutionary changes in any one of the loops can alter restriction specificity.  相似文献   

10.
The TRIM5alpha proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5alpha orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5alpha proteins functionally resembled human TRIM5alpha, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5alpha proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5alpha, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5alpha B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5alpha proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5alpha proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.  相似文献   

11.
The Fv1 gene restricts murine leukemia virus replication via an interaction with the viral capsid protein. To study this interaction, a number of mutations, including a series of N-terminal and C-terminal deletions, internal deletions, and a number of single-amino-acid substitutions, were introduced into the n and b alleles of the Fv1 gene and the effects of these changes on virus restriction were measured. A significant fraction of the Fv1 protein was not required for restriction; however, retention of an intact major homology region as well as of domains toward the N and C termini was essential. Binding specificity appeared to be a combinatorial property of a number of residues within the C-terminal portion of Fv1.  相似文献   

12.
13.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5alpha and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a 'fossil record' of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5alpha proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species-dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

14.
Saenz DT  Teo W  Olsen JC  Poeschla EM 《Journal of virology》2005,79(24):15175-15188
The Ref1 and Lv1 postentry restrictions in human and monkey cells have been analyzed for lentiviruses in the primate and ungulate groups, but no data exist for the third (feline) group. We compared feline immunodeficiency virus (FIV) to other restricted (human immunodeficiency virus type 1 [HIV-1], equine infectious anemia virus [EIAV]) and unrestricted (NB-tropic murine leukemia virus [NB-MLV]) retroviruses across wide ranges of viral inputs in cells from multiple primate and nonprimate species. We also characterized restrictions conferred to permissive feline and canine cells engineered to express rhesus and human TRIM5alpha proteins and performed RNA interference (RNAi) against endogenous TRIM5alpha. We find that expression of rhesus or human TRIM5alpha proteins in feline cells restricts FIV, impairing pseudotyped vector transduction and viral replication, but rhesus TRIM5alpha is more restricting than human TRIM5alpha. Notably, however, canine cells did not support restriction by human TRIM5alpha and supported minimal restriction by rhesus TRIM5alpha, suggesting that these proteins may not function autonomously or that a canine factor interferes. Stable RNAi knockdown of endogenous rhesus TRIM5alpha resulted in marked increases in FIV and HIV-1 infectivities while having no effect on NB-MLV. A panel of nonprimate cell lines varied widely in susceptibility to lentiviral vector transduction, but normalized FIV and HIV-1 vectors varied concordantly. In contrast, in human and monkey cells, relative restriction of FIV compared to HIV-1 varied from none to substantial, with the greatest relative infectivity deficit for FIV vectors observed in human T-cell lines. Endogenous and introduced TRIM5alpha restrictions of FIV could be titrated by coinfections with FIV, HIV-1, or EIAV virus-like particles. Arsenic trioxide had complex and TRIM5alpha-independent enhancing effects on lentiviral but not NB-MLV infection. Implications for human gene therapy are discussed.  相似文献   

15.
Arsenic trioxide (As(2)O(3)) increased human immunodeficiency virus type 1 (HIV-1) infectivity when particular Homo sapiens and Cercopithecus aethiops cell lines were used as targets. Knockdown of human TRIM5alpha by RNA interference eliminated the As(2)O(3) effect, demonstrating that the drug acts by modulating the activity of this retroviral restriction factor. In contrast, HIV-1 infectivity in target cell lines from other primate species (Cercopithecus tantalus, Macaca mulatta, and Aotus trivirgatus) was not increased by As(2)O(3), despite the potent TRIM5-dependent HIV-1 restriction activity that these cells exhibit. To determine if As(2)O(3) responsiveness is characteristic of particular TRIM5 orthologues and not others, TRIM5 cDNAs from these five primate species were transduced into cat fibroblasts, which lack endogenous HIV-1 restriction activity and, therefore, responsiveness to As(2)O(3). In this context, the HIV-1 restriction activity conferred by all TRIM5 orthologues was largely eliminated by As(2)O(3). The effect of As(2)O(3) on HIV-1 restriction is thus shared by different TRIM5 orthologues but dependent on factors specific to the cell line in which TRIM5 is expressed.  相似文献   

16.
TRIM5alpha is a cytoplasmic protein that mediates a post-entry block to infection by some retroviruses. TRIM5alpha contains a tripartite motif (TRIM), which includes RING, B-box 2, and coiled-coil domains, and a C-terminal B30.2 (SPRY) domain. We investigated the contribution of the RING and B-box 2 domains to the antiretroviral activity of rhesus monkey TRIM5alpha (TRIM5alpharh), which potently restricts infection by human immunodeficiency virus, type 1 (HIV-1) and simian immunodeficiency virus of African green monkeys (SIVagm). Disruption of the RING domain caused mislocalization of TRIM5alpharh so that the cytoplasmic level of the protein was decreased compared with that of the wild-type protein. Nonetheless, partial ability to restrict HIV-1 and SIVagm was retained by the RING domain mutants. By contrast, although TRIM5alpharh mutants with disrupted B-box 2 domains were efficiently expressed and correctly localized to the cytoplasm, antiretroviral activity was absent. The B-box 2 mutants colocalized and associated with wild-type TRIM5alpharh and exerted dominant-negative effects on the antiretroviral activity of the wild-type protein. Taken together with other data, these results indicate that functionally defective TRIM5alpharh molecules that retain a coiled coil can act as dominant-negative inhibitors of wild-type TRIM5alpharh function. The RING domain of TRIM5alpharh is not absolutely required for retrovirus restriction but can influence cytoplasmic levels of the protein and thus indirectly alter function. The B-box 2 domain, by contrast, appears to be essential for efficient retrovirus restriction.  相似文献   

17.
Dodding MP  Bock M  Yap MW  Stoye JP 《Journal of virology》2005,79(16):10571-10577
Murine leukemia virus is restricted in mouse cells lines by a host factor known as Fv1 and in human cell lines by Ref1. Genetic evidence indicates that these restriction factors target the virus capsid (CA) protein. Restriction can be overcome by adding virus at a high multiplicity of infection, indicating that the restriction factors can be saturated. Cells preexposed to restricted virus will allow infection by a second virus which would normally be restricted. This phenomenon is known as abrogation; it provides us with a tool with which to study the interaction of virus with restriction factors. We tested the abilities of several Gag processing mutants to abrogate restriction. Our results show that CA must be cleaved from both p12 and nucleocapsid in order for the incoming virion to interact with the restriction factor. Endogenous expression of properly processed CA, however, failed to abrogate restriction. These results suggest that as well as being processed, CA must also be properly assembled in the form of a condensed viral core in order to interact with Fv1 and Ref1. This polymeric structure may contain restriction factor binding sites not present in monomeric CA.  相似文献   

18.
19.
Retroviruses encounter dominant postentry restrictions in cells of particular species. Human immunodeficiency virus type 1 (HIV-1) is blocked in the cells of Old World monkeys by TRIM5alpha, a tripartite motif (TRIM) protein composed of RING, B-box 2, coiled-coil, and B30.2(SPRY) domains. Rhesus monkey TRIM5alpha (TRIM5alpha(rh)) more potently blocks HIV-1 infection than human TRIM5alpha (TRIM5alpha(hu)). Here, by studying chimeric TRIM5alpha proteins, we demonstrate that the major determinant of anti-HIV-1 potency is the B30.2(SPRY) domain. Analysis of species-specific variation in TRIM5alpha has identified three variable regions (v1, v2, and v3) within the B30.2 domain. The TRIM5alpha proteins of Old World primates exhibit expansion, duplication, and residue variation specifically in the v1 region. Replacement of three amino acids in the N terminus of the TRIM5alpha(hu) B30.2 v1 region with the corresponding TRIM5alpha(rh) residues resulted in a TRIM5alpha molecule that restricted HIV-1 nearly as efficiently as wild-type TRIM5alpha(rh). Surprisingly, a single-amino-acid change in this region of TRIM5alpha(hu) allowed potent restriction of simian immunodeficiency virus, a phenotype not observed for either wild-type TRIM5alpha(hu) or TRIM5alpha(rh). Some of the chimeric TRIM5alpha proteins that are >98% identical to the human protein yet mediate a strong restriction of HIV-1 infection may have therapeutic utility. These observations implicate the v1 variable region of the B30.2(SPRY) domain in TRIM5alpha(rh) antiviral potency.  相似文献   

20.
An intact B-box 2 domain is essential for the antiretroviral activity of TRIM5alpha. We modeled the structure of the B-box 2 domain of TRIM5alpha based on the existing three-dimensional structure of the B-box 2 domain of human TRIM29. Using this model, we altered the residues predicted to be exposed on the surface of this globular structure. Most of the alanine substitutions in these residues exerted little effect on the antiretroviral activity of human TRIM5alphahu or rhesus monkey TRIM5alpharh. However, alteration of arginine 119 of TRIM5alphahu or the corresponding arginine 121 of TRIM5alpharh diminished the abilities of the proteins to restrict retroviral infection without affecting trimerization or recognition of the viral capsid. The abilities of these functionally defective TRIM5alpha proteins to accelerate the uncoating of the targeted retroviral capsid were abolished. Removal of the positively charged side chain from B-box 2 arginines 119/120/121 resulted in diminished proteasome-independent turnover of TRIM5alpha and the related restriction factor TRIMCyp. However, testing of an array of mutants revealed that the rapid turnover and retroviral restriction functions of this B-box 2 region are separable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号