首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of long-term exercise on the prevention of sarcopenia using a senescence-accelerated-prone mice (SAMP8) model. Mice were housed in a wheel cage for 25 weeks to increase voluntary exercise. At week 23, endurance running capacity was examined using a treadmill. In a treadmill running test, the wheel cage group had increased endurance running capacity, which suggests that aging-related loss of muscle function was recovered by long-term exercise. Mice were sacrificed and microarray analysis revealed that genes involved in protein synthesis and degradation were upregulated in the skeletal muscles of the wheel cage group, suggesting accelerated protein turnover. Total body and adipose tissue weights decreased following the use of the wheel cage. Thus, long-term, spontaneous physical exercise may assist in recovering from aging-related sarcopenia (loss of muscle function) and obesity.  相似文献   

2.
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.  相似文献   

3.
Selective breeding is an important tool in behavioral genetics and evolutionary physiology, but it has rarely been applied to the study of exercise physiology. We are using artificial selection for increased wheel-running behavior to study the correlated evolution of locomotor activity and physiological determinants of exercise capacity in house mice. We studied enzyme activities and their response to voluntary wheel running in mixed hindlimb muscles of mice from generation 14, at which time individuals from selected lines ran more than twice as many revolutions per day as those from control (unselected) lines. Beginning at weaning and for 8 wk, we housed mice from each of four replicate selected lines and four replicate control lines with access to wheels that were free to rotate (wheel-access group) or locked (sedentary group). Among sedentary animals, mice from selected lines did not exhibit a general increase in aerobic capacities: no mitochondrial [except pyruvate dehydrogenase (PDH)] or glycolytic enzyme activity was significantly (P < 0.05) higher than in control mice. Sedentary mice from the selected lines exhibited a trend for higher muscle aerobic capacities, as indicated by higher levels of mitochondrial (cytochrome-c oxidase, carnitine palmitoyltransferase, citrate synthase, and PDH) and glycolytic (hexokinase and phosphofructokinase) enzymes, with concomitant lower anaerobic capacities, as indicated by lactate dehydrogenase (especially in male mice). Consistent with previous studies of endurance training in rats via voluntary wheel running or forced treadmill exercise, cytochrome-c oxidase, citrate synthase, and carnitine palmitoyltransferase activity increased in the wheel-access groups for both genders; hexokinase also increased in both genders. Some enzymes showed gender-specific responses: PDH and lactate dehydrogenase increased in wheel-access male but not female mice, and glycogen phosphorylase decreased in female but not in male mice. Two-way analysis of covariance revealed significant interactions between line type and activity group; for several enzymes, activities showed greater changes in mice from selected lines, presumably because such mice ran more revolutions per day and at greater velocities. Thus genetic selection for increased voluntary wheel running did not reduce the capability of muscle aerobic capacity to respond to training.  相似文献   

4.
Submandibular lymph nodes (SLN) are crucial for immune surveillance of the anterior ocular chamber and upper respiratory tract; little is known about how training and exercise affect SLN lymphocytes. The intent of this study was to describe the impact of long term freewheel running followed by acute strenuous exercise on SLN lymphocytes in mice. Female C57BL/6 mice were assigned to running wheels or remained sedentary for 8 months, and further randomized to treadmill exercise and sacrifice immediately, treadmill exercise and sacrifice 24 h after exercise cessation, or no treadmill exposure. SLN lymphocytes were isolated and analyzed for CD3, CD4, CD8, and CD19 cell surface markers, phosphatidylserine externalization as a marker of apoptosis, and intracellular glutathione as a marker of oxidative stress. Compared with running wheel mice, older sedentary mice had a lower percent of T cells and higher percent of B cells (p < 0.05). Although intracellular glutathione did not differ between groups, running mice had a lower percent of Annexin V(+) SLN lymphocytes 24 h after treadmill exercise. Further research will be needed to determine if voluntary exercise translates into improved anterior ocular and upper respiratory tract health.  相似文献   

5.
10.1152/ japplphysiol.00832.2001.-To examine the effects of gene inactivation on the plasticity of skeletal muscle, mice null for a specific myosin heavy chain (MHC) isoform were subjected to a voluntary wheel-running paradigm. Despite reduced running performance compared with nontransgenic C57BL/6 mice (NTG), both MHC IIb and MHC IId/x null animals exhibited increased muscle fiber size and muscle oxidative capacity with wheel running. In the MHC IIb null animals, there was no significant change in the percentage of muscle fibers expressing a particular MHC isoform with voluntary wheel running at any time point. In MHC IId/x null mice, wheel running produced a significant increase in the percentage of fibers expressing MHC IIa and MHC I and a significant decrease in the percentage of fibers expressing MHC IIb. Muscle pathology was not affected by wheel running for either MHC null strain. In summary, despite their phenotypes, MHC null mice do engage in voluntary wheel running. Although this wheel-running activity is lessened compared with NTG, there is evidence of distinct patterns of muscle adaptation in both null strains.  相似文献   

6.
7.
Brain cytokines, induced by various inflammatory challenges, have been linked to sickness behaviors, including fatigue. However, the relationship between brain cytokines and fatigue after exercise is not well understood. Delayed recovery of running performance after muscle-damaging downhill running is associated with increased brain IL-1beta concentration compared with uphill running. However, there has been no systematic evaluation of the direct effect of brain IL-1beta on running performance after exercise-induced muscle damage. This study examined the specific role of brain IL-1beta on running performance (either treadmill or wheel running) after uphill and downhill running by manipulating brain IL-1beta activity via intracerebroventricular injection of either IL-1 receptor antagonist (ra; downhill runners) or IL-1beta (uphill runners). Male C57BL/6 mice were assigned to the following groups: uphill-saline, uphill-IL-1beta, downhill-saline, or downhill-IL-1ra. Mice initially ran on a motor-driven treadmill at 22 m/min and -14% or +14% grade for 150 min. After the run, at 8 h (wheel cage) or 22 h (treadmill), uphill mice received intracerebroventricular injections of IL-1beta (900 pg in 2 microl saline) or saline (2 microl), whereas downhill runners received IL-1ra (1.8 microg in 2 microl saline) or saline (2 microl). Later (2 h), running performance was measured (wheel running activity and treadmill run to fatigue). Injection of IL-1beta significantly decreased wheel running activity in uphill runners (P<0.01), whereas IL-1ra improved wheel running in downhill runners (P<0.05). Similarly, IL-1beta decreased and Il-1ra increased run time to fatigue in the uphill and downhill runners, respectively (P<0.01). These results support the hypothesis that increased brain IL-1beta plays an important role in fatigue after muscle-damaging exercise.  相似文献   

8.
Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters.  相似文献   

9.
Objective:The objective of the current study is to assess the effect of a seven-week voluntary wheel running intervention on muscles and bones properties in a mouse model mimicking dominant severe osteogenesis imperfecta (OI).Methods:Female wild-type (WT) and OI (Col1a1Jrt/+) mice either performed voluntarily wheel-running exercise for 7-weeks or remained sedentary. Running distance and speed, forelimb grip strength, isolated muscle force and fatigability as well as bone morphology and mechanical properties were assessed.Results:We demonstrate that female WT and OI mice voluntarily performed exercise, although OI mice exercised less than WT littermates. The exercise regimen increased soleus muscle masses in WT and OI but increased relative grip strength in WT mice only. Specific muscle force and fatigability were similar between WT and OI mice and did not improve with exercise. Furthermore, the exercise regimen did not improve the femoral architectural and biomechanical properties in OI mice.Conclusion:Our study suggests that voluntary wheel running is not appropriate to assess the effects of exercise in a mouse model of OI. Findings from exercising OI mice model studies may not necessarily be transferable to humans.  相似文献   

10.
Little is known about respiratory muscle function in acute undernutrition, although an inadequate caloric intake is common in numerous disease states. Twelve young-adult, healthy female volunteers performed two familiarization experiments and were then studied after 7 days of consuming 40% of normal daily caloric intake as well as after 1 wk of normal caloric intake. In each experiment subjects performed tests of resting pulmonary function, inspiratory muscle strength, and ventilatory endurance, the last of which involved two 60-s and two 6-min isocapnic maximum voluntary ventilation maneuvers. Subjects then walked to exhaustion in 8-20 min on a treadmill. The caloric restriction did not affect performance of any breathing test but did lower endurance time in severe treadmill exercise (P less than 0.05). Basal metabolic rate was lowered, resting blood levels of free fatty acids and beta-hydroxybutyrate elevated, and glucose lowered following the caloric restriction (P less than 0.05). Blood lactate levels were lower during and after exercise following caloric restriction (P less than 0.05). We conclude that ventilatory muscle strength and endurance are fully preserved in caloric restriction severe enough to cause mild ketoacidosis and hypoglycemia, lowered basal metabolic rate, and decreased endurance in severe treadmill exercise.  相似文献   

11.
Moderate-intensity treadmill running can alter male Apc(Min/+) mouse polyp formation. This purpose of this study was to examine whether exercise mode differentially affects Apc(Min/+) mouse intestinal polyp development in male and female mice. Male and female Apc(Min/+) mice were randomly assigned to control, treadmill (18 m/min; 60 min/day; 6 days/wk), or voluntary wheel running (24-h access) groups. Nine weeks of training decreased total intestinal polyps by 29% in male treadmill runners (66 +/- 9; P = 0.038) compared with male controls (93 +/- 7). The number of large polyps (>/=1-mm diameter) were also reduced by 38% in male treadmill runners (49 +/- 6; P = 0.005) compared with male controls (79 +/- 6). Treadmill running in female Apc(Min/+) mice and wheel running in both genders did not affect polyp number or size. Spleen weight decreased in male treadmill runners (91 +/- 9 mg; P = 0.011) and wheel runners (75 +/- 6 mg; P = 0.004) compared with controls (141 +/- 13 mg). Plasma IL-6 was reduced by 96% in male treadmill runners (1.2 +/- 0.6 pg/ml) and 78% in male wheel runners (6.6 +/- 3.3 pg/ml) compared with control mice (27.9 +/- 2.8 pg/ml; P < 0.05). Female mice responded similarly with an 86% decrease in plasma IL-6 with treadmill running (3.2 +/- 1.2 pg/ml) and 90% decrease with wheel running (2.9 +/- 2.0 pg/ml) compared with control mice (21.1 +/- 5.3 pg/ml; P < 0.05). The crypt depth-to-villus height ratio in the intestine, an indirect marker of intestinal inflammation, decreased by 21 (P = 0.024) and 24% (P = 0.029), respectively, in male and female treadmill runners but not wheel runners. Physical activity-induced attenuation of intestinal polyp number and size is dependent on exercise mode and differs between genders. The modulation of systemic and intestinal inflammation may also depend on exercise mode.  相似文献   

12.
The goal of this study was to characterize the genetic contribution to both forced and voluntary exercise performance and to determine whether performance in these two paradigms is controlled by similar genetic influences. There were marked strain differences in treadmill exercise performance, with Swiss Webster (SW) and FVB/NJ mice showing elevated performance and C57BL/6J animals showing decreased performance compared with all other strains. There was no apparent relationship between treadmill performance and voluntary wheel performance, with the exception of SW mice, which demonstrated high performances on both the treadmill and the voluntary wheel. Numerous properties were measured to attempt to understand the basis for these differences in exercise performance. DBA/1J and SW mice exhibited significantly greater cardiac contractility than all other analyzed strains. Conversely, BALB/cByJ mice exhibited significantly reduced cardiac contractility compared with all other strains. Expression of molecular indicators of hypertrophy (atrial natriuretic factor and beta-myosin heavy chain) was significantly elevated in DBA/2J myocardium compared with all other analyzed strains.  相似文献   

13.
Downhill running is associated with fiber damage, inflammation, delayed-onset muscle soreness, and various functional deficits. Curcumin, a constituent of the Indian spice turmeric has been investigated for its anti-inflammatory activity and may offset some of the damage and functional deficits associated with downhill running. This study examined the effects of curcumin on inflammation and recovery of running performance following downhill running in mice. Male mice were assigned to downhill placebo (Down-Plac), downhill curcumin (Down-Cur), uphill placebo (Up-Plac), or uphill curcumin (Up-Cur) groups and run on a treadmill at 22 m/min at -14% or +14% grade, for 150 min. At 48 h or 72 h after the up/downhill run, mice (experiment 1) underwent a treadmill performance run to fatigue. Another subset of mice was placed in voluntary activity wheel cages following the up/downhill run (experiment 2) and their voluntary activity (distance, time and peak speed) was recorded. Additional mice (experiment 3) were killed at 24 h and 48 h following the up/downhill run, and the soleus muscle was harvested for analysis of inflammatory cytokines (IL-1beta, IL-6, and TNF-alpha), and plasma was collected for creatine kinase analysis. Downhill running decreased both treadmill run time to fatigue (48 h and 72 h) and voluntary activity (24 h) (P < 0.05), and curcumin feedings offset these effects on running performance. Downhill running was also associated with an increase in inflammatory cytokines (24 h and 48 h) and creatine kinase (24 h) (P < 0.05) that were blunted by curcumin feedings. These results support the hypothesis that curcumin can reduce inflammation and offset some of the performance deficits associated with eccentric exercise-induced muscle damage.  相似文献   

14.
This study was designed to determine whether endurance training would influence the production of lipid peroxidation (LI-POX) by-products as indicated by malondialdehyde (MDA) at rest and after an acute exercise run. Additionally, the scavenger enzymes catalase (CAT) and superoxide dismutase (SOD) were examined to determine whether changes in LIPOX are associated with alterations in enzyme activity both at rest and after exercise. Male Sprague-Dawley rats (n = 32) were randomly assigned to either trained or sedentary groups and were killed either at rest or after 20 min of treadmill running. The training program increased oxidative capacity 64% in leg muscle. After exercise, the sedentary group demonstrated increased LIPOX levels in liver and white skeletal muscle, whereas the endurance-trained group did not show increases in LIPOX after exercise. CAT activity was higher in both red and white muscle after exercise in the trained animals. Total SOD activity was unaffected by either acute or chronic exercise. These data suggest that endurance training can result in a reduction in LIPOX levels as indicated by MDA during moderate-intensity exercise. It is possible that activation of the enzyme catalase and the increase in respiratory capacity were contributory factors responsible for regulating LIPOX after training during exercise.  相似文献   

15.
An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK alpha-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.  相似文献   

16.
In this paper, we describe the effects of voluntary cage wheel exercise on mouse cardiac and skeletal muscle. Inbred male C57/Bl6 mice (age 6-8 wk; n = 12) [corrected] ran an average of 4.3 h/24 h, for an average distance of 6.8 km/24 h, and at an average speed of 26.4 m/min. A significant increase in the ratio of heart mass to body mass (mg/g) was evident after 2 wk of voluntary exercise, and cardiac atrial natriuretic factor and brain natriuretic peptide mRNA levels were significantly increased in the ventricles after 4 wk of voluntary exercise. A significant increase in the percentage of fibers expressing myosin heavy chain (MHC) IIa was observed in both the gastrocnemius and the tibialis anterior (TA) by 2 wk, and a significant decrease in the percentage of fibers expressing IIb MHC was evident in both muscles after 4 wk of voluntary exercise. The TA muscle showed a greater increase in the percentage of IIa MHC-expressing fibers than did the gastrocnemius muscle (40 and 20%, respectively, compared with 10% for nonexercised). Finally, the number of oxidative fibers as revealed by NADH-tetrazolium reductase histochemical staining was increased in the TA but not the gastrocnemius after 4 wk of voluntary exercise. All results are relative to age-matched mice housed without access to running wheels. Together these data demonstrate that voluntary exercise in mice results in cardiac and skeletal muscle adaptations consistent with endurance exercise.  相似文献   

17.
The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.  相似文献   

18.
A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of alpha(1)-AMPK (alpha(1)-AMPK-DN) in skeletal muscle and subjected to treadmill running. alpha(1)-AMPK-DN mice exhibited a 50% reduction in alpha(1)-AMPK activity and almost complete loss of alpha(2)-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, alpha(1)-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between alpha(1)-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in alpha(1)-AMPK-DN mice, indicating that alpha(1)-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased alpha(2)-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.  相似文献   

19.
In a previous study, we found that in house mice both genetic selection (10 generations of artificial selection for high voluntary activity on running wheels) and access to running wheels (7-8 weeks) elicited a modest increase in maximal oxygen consumption. Based on these results, we hypothesized that genetic selection would affect the changes in endurance and oxidative capacity of the medial gastrocnemius (MG) muscle induced by wheel access (training response). Wheel access increased the isotonic endurance of the MG in both genetically selected and random-bred (control) mice. However, this exercise-induced improvement in isotonic endurance of the MG was similar between genetically selected and control mice. Wheel access also increased the succinate dehydrogenase activity of MG muscle fibers in both selected and control lines. However, this exercise-induced increase in succinate dehydrogenase activity was comparable between genetically selected and control animals. Taken together, these results indicate that the modest increase in maximal oxygen consumption associated with genetic selection is not reflected by the training-induced changes in oxidative capacity and endurance of MG muscle fibers.  相似文献   

20.
Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6-8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号