首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
实地测定了黄土高原半干旱区固原不同生长年限苜蓿草地和连作8a苜蓿草地翻耕轮作不同年限粮食作物后深层土壤水分特征,分析了苜蓿草地土壤干燥化特征和粮草轮作对土壤水分的恢复效应.结果表明:(1)苜蓿连作1a、5a、8a和12a等4类苜蓿草地0~1000cm土层平均土壤湿度值为6.6%,平均土壤水分过耗量702.8mm,平均土壤干燥化速率147.1mm/a,达到强烈干燥化程度,苜蓿连作5a土壤干层深度超过1000cm,苜蓿连作8a土壤干层深度超过1360cm,苜蓿草地合理利用年限为7a.(2)连作8a苜蓿草地翻耕并轮作4~7a和25a粮食作物等5类粮田0~1000cm土层土壤湿度介于6.74%~11.95%,土壤贮水量恢复值介于210.6~887.3mm,平均土壤水分恢复速率为80.8mm/a.轮作6a后粮田土壤干层轻度恢复程度以上深度达到1000cm.通过粮草轮作使苜蓿草地土壤湿度恢复到当地土壤稳定湿度需要13a以上.黄土高原半干旱区适宜的粮草轮作模式为:7a苜蓿→13a粮食作物.  相似文献   

2.
陕北黄土区陡坡地人工植被的土壤水分生态环境   总被引:11,自引:0,他引:11  
王延平  邵明安  张兴昌 《生态学报》2008,28(8):3769-3778
通过定点土壤水分测定与对比分析,研究了陕北黄土区35~45°陡坡地人工植被的土壤水分亏缺状况、年际、年内动态变化规律、干燥化特征及其补偿恢复特征.结果表明:陡坡地多年生人工植被的土壤水分亏缺极为严重,贫水年0~10m土层贮水量仅相当于田间持水量的26.2%~42.0%,丰水年贮水量也仅占田间持水量的27.0%~43.3%;亏缺次序为:柠条>刺槐>苜蓿>侧柏>杨树>油松>荒坡>杏>枣>农地.年际间同一植被土壤水分含量的变化主要发生在200cm以上土层内, 变异程度随土壤深度的增加而减弱.同一生长季,各种植被0~120cm土层含水量的变异系数都较大,但植被间差异较小;120cm以下土层,变异系数较小,但植被间差异较大.陡坡地多年生植被均有永久干层存在,但深层土壤干燥化强度因植物种类和生长年限而存在明显的差异.雨季土壤水分的补偿和恢复深度为1.0~1.4m,但不同植被的土壤贮水增量和补偿度有较大差异.同一植被丰水年的雨水补偿深度比干旱年可增加60cm以上,5m土层贮水增量增加3倍以上.在自然降雨条件下,陡坡地多年生人工植被的土壤贮水亏缺状况不能得到改善, 土壤干化现象也不可能有所缓解.  相似文献   

3.
黄土高原半干旱区土壤干层水分恢复研究   总被引:47,自引:9,他引:38  
王志强  刘宝元  路炳军 《生态学报》2003,23(9):1944-1950
黄土高原土壤干层是一个重要的生态环境问题,研究干层土壤水分的恢复对正确指导黄土高原退耕还林还草,实现该区土地的可持续利用具有重要意义。研究在黄土高原半干旱区的固原县,选择了将紫花苜蓿翻耕后3a、12a的坡耕地,对其土壤干层的水分恢复状况进行了分析。发现二者土壤干层水分最大恢复深度分别为3m、4.8m,但土壤水分含量在中效水及其之上的主要恢复层深度分别为2m、2.2m。苜蓿翻耕3a和12a后2m以上土层土壤平均湿度都能恢复到易效水或极易效水的水平,可以满足1年生农作物的生长需求而不会进一步恶化土壤水分生态环境。但即使苜蓿翻耕12a后土壤水分,也不能满足林木和多年牛豆科牧草正常生长的水分需求。  相似文献   

4.
高宇  樊军  彭小平  王力  米美霞 《生态学报》2014,34(23):7038-7046
研究了黄土高原水蚀风蚀交错区六道沟小流域8种植被类型条件下植物消耗土壤水分深度与降水对应的补充深度。结果表明:裸地、农地、撂荒地、人工草(灌)地(苜蓿地、柠条地、沙打旺地)、当地典型草地(荒草地、长芒草地)在平水年及干旱年,土壤水分均表现为负平衡;丰水年部分样地土壤水分得到补充。平水年以及干旱年(2010—2011年)植物耗水深度依次为:柠条地撂荒地沙打旺地苜蓿地≈长芒草地≈荒草地农地裸地,降水补充深度为农地裸地撂荒地荒草地长芒草地沙打旺地苜蓿地柠条地。丰水年(2012年)裸地、苜蓿地、荒草地与沙打旺地土壤水分并未显示出明显负平衡过程,但柠条地耗水深度依然达到260 cm,其它样地依次为撂荒地农地长芒草地;降水入渗深度排序:农地裸地撂荒地=柠条地荒草地=苜蓿地长芒草地沙打旺地。水蚀风蚀交错区土壤蒸发(裸地蒸发)以及降水补充深度一般为0—120 cm范围内,丰水年土壤水分能得到恢复。农地的土壤水分消耗与补充深度略有增加。农地撂荒后耗水深度与撂荒地植被类型有密切联系,随植被盖度与丰度的增加,耗水有进一步加深的趋势,撂荒地土壤水分补充深度小于等于消耗深度。农地退耕还草所种植的深根性植被(苜蓿、沙打旺、柠条等)不仅会迅速消耗当季降水,同时会进一步消耗土壤深层储水,致使120 cm以下观测土层土壤含水量较低,造成土壤水分消耗深度较浅的假象。除撂荒地外,高生物产量的人工草(灌)耗水量高,耗水深度也深,因此在退耕还林(草)过程中,应该充分考虑不同植被类型的年度水分交换深度,采取措施降低消耗深度,增加入渗深度。  相似文献   

5.
以各类作物农田水分为对照,连续两年对宁南山区不同生长年限苜蓿深层土壤水分以及10年生苜蓿地耕翻后轮作不同年份作物农田的水分进行了测定.结果表明,随着苜蓿生长年限的增加,干层深度与厚度先增加后减小.3年生苜蓿干层深度为720cm,6年生干层最深可达1000cm以下,10年生干层深度为920cm,3~12年生苜蓿地0~700cm土层基本上均属于土壤干层范围.苜蓿地0~800cm土壤湿度随生长年限增加而降低,2004年测定的4、7年生和12年生苜蓿地0~700cm土层平均含水率分别为5.30%、5.22%和5.01%;2005年测定的3、6年生和10年生苜蓿地0~800cm土层湿度分别为6.26%、5.60%和5.27%;而800~1000cm土层湿度在一定年限后有恢复趋势.300cm为苜蓿地降水下渗的最大临界深度,300cm以下土壤干层一旦形成,将长期存在,7~12年生苜蓿300~700cm土层湿度仅维持在4.0%左右.苜蓿地和农田的土壤干层厚度与湿度有较大差异,草粮轮作可使苜蓿土壤干层水分基本恢复到农田湿度,而且轮作年份越长,土壤各层次水分恢复效果越好,10年生苜蓿轮作18年后土壤水分基本恢复到农田状态.  相似文献   

6.
渭北旱塬苹果园地产量和深层土壤水分效应模拟   总被引:8,自引:0,他引:8  
张社红  李军  王学春  王亚莉 《生态学报》2011,31(13):3767-3777
为了研究实时气象条件下渭北旱塬不同生长年限苹果园地产量变化趋势和深层土壤水分变化规律,在模型适用性与模拟精度验证基础上,应用WinEPIC模型模拟研究了1962—2001年期间洛川旱塬苹果园地产量演变动态和深层土壤水分效应。结果表明:(1) 在模拟研究期间,洛川旱塬4—40年生苹果园产量整体上呈波动性下降趋势,初期产量逐渐增加,11—23年生达到最大值(平均为28.8 t/hm2),之后随降水量年际波动呈现出明显的波动性降低趋势。(2) 40年间苹果园地遭受的干旱胁迫日数呈波动性上升趋势,与年降水量波动趋势相反。(3) 1—15年生期间苹果园地平均年耗水量高于同期年降水量,导致苹果园地0—10 m土层土壤强烈干燥化,逐月土壤有效含水量波动性降低,1—10年生、11—20年生和21—40年生期间发生土壤干燥化并且程度逐渐加剧,但干燥化速率逐渐减缓,土壤干燥化速率分别为95.4 mm/a、12 mm/a和1.5 mm/a。(4) 随生长年限的延长,苹果园地0—10 m土层土壤湿度逐渐降低、土壤干层分布深度逐渐加大,在14年生时超过了10 m,20年生以后2—10 m 土层形成稳定的土壤干层。因此,基于土壤水分利用的苹果生长与果园利用的合理年限为20 a,最长不宜超过23 a。  相似文献   

7.
黄土高原半湿润区苜蓿草地土壤干层形成及水分恢复   总被引:6,自引:0,他引:6  
研究了黄土高原地区不同生长年限苜蓿草地0~1000 cm土层土壤水分消耗规律.结果表明,荒地与苜蓿草地土壤干层出现的区域及发生的程度不同:荒地在80~100 cm土层深度,出现轻度干层;生长年限低于8a(含8a)的苜蓿草地,在250~350 cm土层出现轻度干层,生长年限超过8a,出现中度干层,干层范围延至500 cm土层以下.苜蓿生长超过18a,0~200 cm上层土壤水分开始恢复,年均恢复1.49%;但在200~1000 cm土壤深层,18、26年生苜蓿草地土壤含水量仅为10.20%,深层土壤通体干化,水分难以恢复.  相似文献   

8.
黄土高原不同植被类型区人工林地深层土壤干燥化效应   总被引:14,自引:1,他引:13  
人工林地土壤干燥化正在日益严重的威胁着黄土高原人工植被建设成效.在黄土高原3个植被类型区广泛观测苹果、刺槐、油松、辽东栎、狼牙刺、沙棘和柠条等23种不同立地和树龄林地深层土壤湿度基础上,比较和分析了各类林地土壤含水量、土壤湿度剖面分布和土壤干燥化强度,定量评价了各类林地深层土壤干燥化效应.研究结果表明:(1)23种林地0~1000 cm土层土壤湿度、土壤贮水量和土壤有效含水量平均值依次为10.84%、1409.8 mm和446.6 mm,明显低于荒草地土壤湿度和当地土壤稳定湿度值,各类林地平均土壤水分过耗量超过500 mm,每年多消耗土壤水分36.8 mm.林地土壤水分过耗量和耗水速度以中部半干旱森林草原区最高,南部半湿润森林区相对较低.林地土壤干燥化速度为:柠条和狼牙刺林地>油松林地>刺槐和沙棘林地>苹果园地和辽东栎林地;(2)除林龄较短的苹果、沙棘和柠条林地外,各类林地在300 cm以下深层土壤湿度明显低于荒草地土壤湿度和土壤稳定湿度值,林地深层土壤湿度表现为阳坡低于阴坡、坡地低于平地,最大耗水深度接近或超过1000 cm.随林龄增长,林地深层土壤湿度逐渐降低,土壤干层逐渐加深和加厚;(3)23种林地土壤干燥化指数平均值为51.6%,达到中度(偏重)干燥化强度,林地土壤干层厚度达到或超过800 cm,随着降水量从半湿润区向半干旱偏旱区趋势性减少,林地土壤干燥化强度趋于强化,土壤干层厚度趋于增加.土壤干燥化强度和土壤干层厚度表现为:油松、辽东栎、狼牙刺和柠条林地>刺槐林地>苹果和沙棘林地.  相似文献   

9.
黄土高原不同干旱类型区苜蓿草地深层土壤干燥化效应   总被引:27,自引:3,他引:24  
田间实地测了黄土高原不同干旱类型区不同生长年限苜蓿草地0~1000cm土层土壤湿度,分析和比较了各类苜蓿草地深层土壤干燥化效应特征。结果表明,在半湿润区、半干旱区和半干旱偏旱区,各类苜蓿草地土壤湿度平均值分别为10.84%、7.07%和5.45%,明显低于当地土壤稳定湿度值和荒草地土壤湿度值,土壤水分过耗量分别为540.2、641.1mm和455.0mm,平均土壤干燥化速度分别为61.2、101.9mm/a和99.0mm/a;3种类型区各类苜蓿草地年降水入渗深度分别为187.8、144cm和173cm,降水入渗深度以下深层土壤湿度保持稳定的干燥化状态;土壤干燥化强度随苜蓿草地生长年限延长而加剧,3年生苜蓿草地为中度干燥化强度,土壤干层厚度达到500~760cm,4年生以上苜蓿草地已达到严重干燥化和强烈干燥化强度,土壤干层厚度超过940~1000cm;通过粮草轮作使苜蓿草地土壤湿度恢复到当地土壤稳定湿度分别需要6、11a和18a以上。  相似文献   

10.
研究了陇中黄土高原半干旱区不同种植年限紫花苜蓿地土壤水分特征及适宜种植年限.结果表明: 3、8、12和14年生苜蓿地0~300 cm土层土壤平均含水量均明显低于当地土壤稳定湿度值.12和14年生苜蓿地0~300 cm土层土壤含水量仅为9.2%和7.1%,甚至低于作物有效水分下限.1、3、8、12和14年生紫花苜蓿地0~300 cm土层干燥化指数分别为125.4%、30.5%、18.4%、-34.2%和-83.3%,除1年生苜蓿地土壤无干燥化现象之外,其余种植年限苜蓿地土壤均呈不同程度的干燥化.随苜蓿种植年限的延长,土壤干燥化程度加剧,但干燥化速率呈减缓趋势.综合苜蓿生产力动态和土壤水分状况,该区紫花苜蓿适宜的种植年限为8~10 年.  相似文献   

11.
李云  刘炜  王朝辉  高亚军 《生态学报》2014,34(13):3788-3796
在黄土高原南部娄土上,通过2a田间试验研究了小麦和苜蓿对土壤中不同累积量的残留硝态氮的利用差异。研究包括0—3 m土壤残留硝态氮累积量(设N1、N2、N3、N4、N5和N6共6个水平,残留硝态氮量依次增加)和作物种类(冬小麦和苜蓿)2个因素,分别采用冬小麦-夏休闲-冬小麦和苜蓿连作种植方式。结果表明,不施用氮肥条件下,冬小麦-休闲-冬小麦轮作周期与苜蓿连作2a内,土壤残留硝态氮的消长有明显差异。在第1季小麦生长期间,小麦的氮素携出量(63.9—130.3 kg/hm2)、氮素携出量占播前残留硝态氮量的比例(18%—27%)及氮素携出量占该生长季硝态氮减少量的比例(29%—62%)均显著高于同期的苜蓿处理。在第2个生长季内,苜蓿的氮素携出量是小麦当季氮素携出量的近6倍,但由于苜蓿固氮作用强烈,至第2生长季结束后,0—3 m土壤硝态氮量与苜蓿播前相比平均只减少了72.4 kg/hm2,而麦田0—3 m土壤硝态氮量与小麦播前相比减少了158.3 kg/hm2。在短期内如果通过种植作物消耗土壤剖面的残留硝态氮,冬小麦比苜蓿更有优势。第1季小麦氮素携出量与小麦播前0—2 m(r=0.920**)和0—3 m(r=0.857*)土层残留硝态氮量呈显著或极显著正相关,与0—1 m土层残留硝态氮量没有显著相关性;第1生长季苜蓿氮素携出量与播前0—1 m土壤硝态氮累积量呈显著正相关关系(r=0.846*),而与0—2 m和0—3 m土壤硝态氮累积量的相关性并不显著。小麦比苜蓿能利用更深土层中的硝态氮。随着播前0—3 m土壤残留硝态氮的增加,小麦和苜蓿地上部氮素携出量呈增加的趋势,硝态氮表观损失也显著增加。  相似文献   

12.
黄土区深层土壤干燥化与土壤水分循环特征   总被引:10,自引:4,他引:10  
陈洪松  邵明安  王克林 《生态学报》2005,25(10):2491-2498
深层土壤干燥化是黄土高原地区植被建设过程中出现的重大生态环境问题。采用人工和天然降雨试验,研究了黄土高原沟壑区荒草地和裸地的土壤水分循环特征,并分析和探讨了深层土壤干燥化的成因。2002年天然降雨量为459.9mm(多年平均降雨量为584.1mm),属干旱年,土壤水分观测期间(2002年6月13日至11月24日)天然和人工降雨试验小区的天然降雨量分别为305.2mm和236.8mm。人工降雨试验主要在2002年6~8月进行,土壤水分观测期间荒草地和裸地的人工降雨量分别为360.7mm和418.5mm。试验结果表明:干旱年,荒草地和裸地土壤储水量处于负补偿,入渗雨量全为蒸发蒸腾作用所消耗。在强烈的蒸发蒸腾作用下,剖面内(0~200cm)土壤水分的整体移动性能较强,最大蒸发蒸腾作用层深度很快形成。荒草地土壤水分循环强度大于裸地,表现为荒草地最大蒸发蒸腾作用层深度较大,两者分别为200cm和180cm。雨季量少且分散的降雨极易为强烈的蒸发蒸腾作用所消耗,深层土壤由于缺乏降雨入渗的补给而逐渐干燥化。丰水年,荒草地和裸地土壤储水量处于正补偿,但入渗雨量的大部分(80%以上)为强烈的蒸发蒸腾作用所消耗。在相同的降雨量条件下,荒草地土壤水分循环强度高于裸地,表现为荒草地降雨入渗补给深度较小。连续降雨有利于土壤水分向深层的运移,从而部分缓减深层土壤的干燥化进程。近50a来黄土高原地区气候变暖和降雨减少可能是土壤干层形成的直接原因,而植被类型选择失当、群落密度过大和生产力过高则会加剧深层土壤的干燥化进程。  相似文献   

13.
黄艳章  信忠保 《生态学报》2020,40(3):778-788
黄土高原退耕还林近20年来,大量生态恢复工程的实施,势必对土壤碳库产生影响。为评估生态恢复的土壤碳汇效益,本研究以黄土残塬沟壑区天然次生林、人工生态林和人工经济林等3种生态恢复模式为对象,研究其4 m土壤有机碳(SOC)储量。结果表明:(1)三种生态恢复模式具有明显的碳汇效益。天然次生林4 m SOC储量为(166.40±42.90) t/hm~2比坡中农地((58.73±4.73) t/hm~2显著增加了183.33%;人工生态林和人工经济林分别为(111.32±13.30) t/hm~2、(104.60±7.10) t/hm~2比坡中农地高89.54%、78.11%;(2)0—60 cm SOC含量随深度的增加显著降低(P0.05),由表层的(11.03±7.51) g/kg减少到(2.40±0.93) g/kg,降幅达78.22%,表现出明显的表聚性;60—400 cm SOC含量变化较为稳定,含量较低为(1.81±0.88) g/kg;(3)三种恢复模式深层(1—4 m)SOC储量与坡中农地相比分别提高109.43%、76.43%、65.06%;深层SOC储量天然次生林((77.81±8.40) t/hm~2)、人工生态林((65.55±7.71) t/hm~2)、人工经济林((61.32±3.16) t/hm~2)分别占4 m剖面有机碳储量的46.76%、58.89%、58.62%。结果表明天然次生林和人工混交林是黄土高原残塬沟壑区良好的生态恢复模式,且深层SOC在土壤碳库中不可忽视。  相似文献   

14.
A dry soil layer (DSL) is a common soil desiccation phenomenon that generally forms at a particular depth in the soil profile because of climatic factors and poor land management, and this phenomenon can influence the water cycle and has been observed on the Loess Plateau of China and other similar regions around the world. Therefore, an investigation of the DSL formation depth (DSLFD), thickness (DSLT) and mean water content (MWDSL) on the Loess Plateau can provide valuable information. This paper synthesized 69 recent publications (1,149 observations of DSLs from 73 sites) that focused on DSLs in this region, and the results indicated that DSLs are significantly affected by climatic and vegetation factors. The mean annual precipitation had a significant positive relationship with DSLFD (p = 0.0003) and MWDSL (p<0.0001) and a negative relationship with DSLT (p = 0.0071). Crops had the lowest DSLT and highest MWDSL values compared with other vegetation types. A significant correlation was observed between the occurrence of DSLs and the years since planting for grasses, shrubs, trees and orchards, and the severity of DSLs increased with increasing planting years and wheat yield. Our results suggest that optimizing land-use management can mitigate DSL formation and development on the Loess Plateau. Understanding the dominant factors affecting DSLs will provide information for use in guidelines for the sustainable development of economies and restoration of natural environments experiencing water deficiencies.  相似文献   

15.
在模型验证和数据库组建基础上,用WinEPIC模型定量模拟研究了黄土高原半湿润区长武、半干旱区固原和半干旱偏旱区海原20~30年内苜蓿草地水分生产潜力、10m土层土壤有效含水量和土壤湿度剖面分布特征的动态变化.结果表明:长武、固原和海原苜蓿草地水分生产潜力模拟值随降水量变化而呈现波动性降低趋势,其平均值分别为8.81、3.83和2.48t.hm-2;长武、固原和海原苜蓿草地10m土层逐月土壤有效含水量模拟值均呈现明显的波动性降低趋势,模拟初期,4~8年生苜蓿草地土壤干燥化趋势十分强烈,此后,随降水量变化长期在较低水平上波动;随着苜蓿生长年限的延长,苜蓿草地土壤干层逐年加深、加厚,长武、固原和海原土壤干层分布深度达到10m所需时间依次为6、6和4年,此后苜蓿草地降水渗深以下土层长期维持较为稳定的干燥化状态;苜蓿草地水分持续利用的合理年限为半湿润区8~10年,半干旱区6~8年,半干旱偏旱区4~6年.  相似文献   

16.
以黄土高原丘陵区主要退耕还林树种油松为研究对象,对甘肃省庆阳市合水县采用样地调查与生物量实测方法,分析不同坡向(阳坡、阴坡)及退耕年限(退耕6年、9年和12年)油松人工林的乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及油松人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征,探讨甘肃黄土高原丘陵区生态林的固碳作用。结果表明:(1)油松不同器官碳含量为48.15%~53.90%,各器官碳含量大小为树干>叶>细枝>粗枝>根桩>粗根>树皮>大根>中根>小根>细根>球果;灌木层碳含量为茎>叶>根;草本层碳含量为地上部分>地下部分。(2)油松人工林的枯落物层碳含量为未分解层大于半分解层。(3)0~100 cm土壤层的碳含量随退耕年限增加而增大,随土壤深度的增加而下降;0~10 cm、10~20 cm土壤层不同坡向间碳含量差异显著。(4)阳坡和阴坡退耕6年、9年和12年油松林总碳储量分别为42.90、50.50、59.22 t·hm-2和45.08、53.77、65.70 t·hm-2。研究认为,黄土高原丘陵区阳坡和阴坡均适宜油松林发挥固碳效益,且阴坡要优于阳坡,是甘肃黄土高原丘陵区的理想树种。  相似文献   

17.
 黄土高原人工刺槐(Robinia pseudoacacia)林地深层土壤干燥化现象普遍发生, 日益严峻地威胁着人工植被建设成效。分析和比较半干旱和半湿润地区刺槐林地生物量演变趋势、深层土壤干燥化发生规律和区域分布特征差异, 能够为黄土高原因地制宜地营造刺槐林提供科学依据。在WinEPIC模型气象、土壤和作物参数数据库组建与模拟精度验证的基础上, 应用WinEPIC模型模拟研究了1957–2001年黄土高原半湿润地区洛川和长武、半干旱地区延安和固原等地1–45年生刺槐林地生物量演变规律和深层土壤干燥化效应。结果表明: 洛川、长武、延安和固原的刺槐林地连年净生产力模拟值在5–8年生时达到最大值后, 随着降水量年际波动呈现出明显的波动性降低趋势, 其平均值分别为5.33 × 103、4.56 × 103、4.03 × 103和3.35 ×103 kg·hm–2·a–1; 1–7年生刺槐林地年耗水量高于同期年降水量, 导致林地0–10 m土层土壤强烈干燥化, 洛川、长武、延安和固原刺槐林地年均土壤干燥化速率分别为164.3、165.7、187.1和190.0 mm·a–1, 8–45年生刺槐林地有效含水量在0–250 mm的较低水平上随降水量变化而波动; 1–9年生刺槐林地0–10 m土层土壤湿度剖面分布变化剧烈, 土壤湿度逐年降低且土壤干层逐年加厚, 7–9年生时土壤干层厚度已经超过10 m, 8–45年生刺槐林地2–10 m土层土壤湿度保持相对稳定的干燥化状态; 洛川和长武刺槐林地水分生产力较高且相对稳定, 刺槐林地生长期可以超过45年; 而延安和固原刺槐林地水分生产力较低且稳定性差, 刺槐林稳定生长期不超过40年。  相似文献   

18.
黄土高原水蚀风蚀交错区植被地上生物量及其影响因素   总被引:6,自引:0,他引:6  
Wang JG  Fan J  Wang QJ  Wang L 《应用生态学报》2011,22(3):556-564
采用野外调查的方法,于2009年9月下旬测定了六道沟小流域不同土地利用方式下的地上生物量以及土壤水分含量和养分含量,研究了水蚀风蚀交错区典型小流域植被地上生物量水平及其影响因素.结果表明:六道沟小流域主要植被地上干生物量在177~2207g·m-2;其中,玉米、谷子、弃耕地、人工草地、天然草地和灌木地的地上干生物量分别为2097~2207、518~775、248~578、280~545、177~396和372~680 g·m-2.农田平均土壤含水量(0~100 cm土层)最高,达14.2%,灌木地最低,为10.9%;弃耕地土壤水分含量的变异系数最大,为26.7%,说明弃耕地土壤水分有很强的空间异质性.土壤平均储水量大小顺序为:农田>人工草地>弃耕地>天然草地>灌木地,苜蓿地和柠条地出现土壤干化现象.植被地上干生物量与0~100 cm土层土壤储水量存在显著正相关关系(r=0.639,P<0.05),地上鲜生物量与植被的株高呈极显著正相关,较高植被的地上生物量可以间接控制水蚀风蚀交错区土壤侵蚀.植被地上生物量与土壤水分、养分具有很高的相关性,但与海拔、坡度、坡向、容重等的相关性不显著.  相似文献   

19.
黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律   总被引:4,自引:0,他引:4  
申家朋  张文辉 《生态学报》2014,34(10):2746-2754
采用样地调查与生物量实测方法,研究了甘肃黄土丘陵区不同坡向(阳坡、阴坡)和退耕年限(退耕5a、8a和11a)刺槐人工林乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及刺槐人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征。结果表明:刺槐不同器官碳含量均值变化范围为43.02%—50.89%%,从高到低排列顺序为树干细枝中枝粗枝叶根桩大根粗根小根中根树皮细根;灌木层碳含量为35.76%—42.74%;草本层碳含量为35.83%—43.64%;枯落物层碳含量为39.55%—41.77%;土壤层(0—100 cm)碳含量均值变化范围0.22%—0.99%,随退耕年限增加而增大,土壤深度的增加而逐渐下降。刺槐人工林生态系统碳库空间分布序列为土壤层(0—100 cm)植被层枯落物层。阳坡和阴坡退耕5a、8a、11a刺槐林生态系统碳储量分别为52.52、58.93、73.72 t/hm2和49.95、61.83、79.03 t/hm2。退耕年限和坡向是影响刺槐人工林碳储量增加的主要因素。刺槐人工林具有良好的固碳效益,是黄土丘陵区的理想树种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号