首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naturally occurring genetic variation for contents of cationic minerals in seeds of Arabidopsis thaliana was studied by screening a series of accessions (ecotypes) for Ca, Fe, K, Mg, Mn, Na, Zn, and for total contents of P. Variation was observed for all minerals and correlations between contents of various minerals were present, most noticeably between Ca and Mg, P and Mg, and P and Mn. The genetic basis of this variation was further studied by QTL analysis, using the Landsberg erecta (Ler) × Cape Verde Islands (Cvi) recombinant inbred population. For all minerals, except Na, one or more QTL were detected, explaining up to 78% of the variation. The map positions of several QTL were confirmed by analysis of near isogenic lines, carrying small Cvi introgressions in Ler background. Interesting co‐locations of QTL suggest pleiotropic effects, due to physiological coupling of the accumulation of certain minerals or to linkage of different genes. By comparing the map positions of QTL with the positions of genes expected to play a role in cation translocation, several candidate genes are suggested.  相似文献   

2.
Phenotypic plasticity is an important response mechanism of plants to environmental heterogeneity. Here, we explored the genetic basis of plastic responses of Arabidopsis thaliana to water deficit by experimentally mapping quantitative trait loci (QTL) in two recombinant inbred populations (Cvi x Ler and Ler x Col). We detected genetic variation and significant genotype-by-environment interactions for many traits related to water use. We also mapped 26 QTL, including six for carbon isotope composition (delta13C). Negative genetic correlations between fruit length and fruit production as well as between flowering time and branch production were corroborated by QTL colocalization, suggesting these correlations are due to pleiotropy or physical linkage. Water-limited plants were more apically dominant with greater root:shoot ratios and higher delta13C (higher water-use efficiency) when compared to well-watered plants. Many of the QTL effects for these traits interacted significantly with the irrigation treatment, suggesting that the observed phenotypic plasticity is genetically based. We specifically searched for epistatic (QTL-QTL) interactions using a two-dimensional genome scan, which allowed us to detect epistasis regardless of additive genetic effects. We found several significant QTL-QTL interactions including three that exhibited environmental dependence. These results provide preliminary evidence for proposed genetic mechanisms underlying phenotypic plasticity.  相似文献   

3.
Allelic variation at the FRI (FRIGIDA) and FLC (FLOWERING LOCUS C) loci are major determinants of flowering time in Arabidopsis accessions. Dominant alleles of FRI confer a vernalization requirement causing plants to overwinter vegetatively. Many early flowering accessions carry loss-of-function fri alleles containing one of two deletions. However, some accessions categorized as early flowering types do not carry these deletion alleles. We have analyzed the molecular basis of earliness in five of these accessions: Cvi, Shakhdara, Wil-2, Kondara, and Kz-9. The Cvi FRI allele carries a number of nucleotide differences, one of which causes an in-frame stop codon in the first exon. The other four accessions contain nucleotide differences that only result in amino acid substitutions. Preliminary genetic analysis was consistent with Cvi carrying a nonfunctional FRI allele; Wil-2 carrying either a defective FRI or a dominant suppressor of FRI function; and Shakhdara, Kondara, and Kz-9 carrying a functional FRI allele with earliness being caused by allelic variation at other loci including FLC. Allelic variation at FLC was also investigated in a range of accessions. A novel nonautonomous Mutator-like transposon was found in the weak FLC allele in Landsberg erecta, positioned in the first intron, a region required for normal FLC regulation. This transposon was not present in FLC alleles of most other accessions including Shakhdara, Kondara, or Kz-9. Thus, variation in Arabidopsis flowering time has arisen through the generation of nonfunctional or weak FRI and FLC alleles.  相似文献   

4.
Mineral nutrients are essential for plant cell function, and understanding the genetic and physiological basis of mineral concentration is therefore important for the development of nutrient-efficient crop varieties that can cope with a shortage of mineral resources. In the present study, we investigated the profiles of B, Ca, Fe, Cu, Mg, P and Zn concentrations in shoots and analyzed the genetic variation in a rapeseed (Brassica napus) double haploid population at normal and deficient boron (B) levels in hydroponic conditions. Significant correlations between the concentrations of different minerals, such as Ca and Mg, Ca and P, and Cu and Fe, existed in both B environments. A total of 35 quantitative trait loci (QTL) and 74 epistatic interaction pairs for mineral concentrations were identified by whole genome analysis of QTL and epistatic interactions. The individual phenotypic contributions of the QTL ranged from 4.4% to 19.0%, and the total percentage of genetic variance that was due to QTL and epistatic interactions varied from 10.4% to 82.4%. Most of these QTL corresponded specifically to one of the two B conditions except for one stable main-effect P-QTL across the B environments. Three QTL for Ca and Mg were found to co-localize under normal B condition. These results revealed that genetic factors control mineral homeostasis in plants and multigenes involving ion transport are required to regulate mineral balance in plants under conditions of diverse nutrient stress. In addition, 26 genes involved in ion uptake and transport in Arabidopsis thaliana were in silico mapped onto the QTL intervals of B. napus by comparative genomic analysis. These candidate orthologous genes in B. napus allowed the selection of genes involved in the controlling mineral concentration that may account for the identified QTL.  相似文献   

5.
Boron (B) is an essential micronutrient for higher plants. There is wide genetic variation in the response to B deficiency among plant species and cultivars. The objective of this study was to identify quantitative trait loci (QTL) that control B efficiency in natural Arabidopsis accessions. The B efficiency coefficient (BEC) and seed yield under low B conditions (SYLB) were investigated by solution culture in two separate experiments in an Arabidopsis recombinant inbred line (RIL) population. Both of the traits studied exhibited high transgressive variation in the RIL population, and, in total, five and three QTL were identified for BEC and SYLB, respectively. Three of the five QTL, including the QTL, AtBE1-2, that has a large effect on the BEC, were found at the interval of the corresponding QTL for SYLB in both experiments. The close genetic relationship between BEC and SYLB was further confirmed by conditional QTL mapping in the RIL population and unconditional QTL mapping in an AtBE1-2-segregated F(2) population. Epistatic interactions for the tested traits were analysed, and were found to be widespread in the detected QTL of Arabidopsis in the RIL population. Comparison of the QTL interval for B efficiency with reported B-related genes showed that 10 B-related genes, together with one BOR1 homolog (BOR5, At1g74810) were located in the QTL region of AtBE1-2. These results suggest that natural variation in B efficiency in Arabidopsis has a complex molecular basis. They also provide a basis for fine mapping and cloning of the B-efficiency genes, with the ultimate aim of discovering the physiological mechanism of action of the genes.  相似文献   

6.
7.
We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci.  相似文献   

8.
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.  相似文献   

9.
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.  相似文献   

10.
11.
12.
Despite compelling evidence that adaptation to local climate is common in plant populations, little is known about the evolutionary genetics of traits that contribute to climatic adaptation. A screen of natural accessions of Arabidopsis thaliana revealed Tsu-1 and Kas-1 to be opposite extremes for water-use efficiency and climate at collection sites for these accessions differs greatly. To provide a tool to understand the genetic basis of this putative adaptation, Kas-1 and Tsu-1 were reciprocally crossed to create a new mapping population. Analysis of F(3) families showed segregating variation in both delta(13)C and transpiration rate, and as expected these traits had a negative genetic correlation (r(g)=- 0.3). 346 RILs, 148 with Kas-1 cytoplasm and 198 with Tsu-1 cytoplasm, were advanced to the F(9) and genotyped using 48 microsatellites and 55 SNPs for a total of 103 markers. This mapping population was used for QTL analysis of delta(13)C using F(9) RIL means. Analysis of this reciprocal cross showed a large effect of cytoplasmic background, as well as two QTL for delta(13)C. The Kas-1 x Tsu-1 mapping population provides a powerful new resource for mapping QTL underlying natural variation and for dissecting the genetic basis of water-use efficiency differences.  相似文献   

13.
Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.  相似文献   

14.
In dicotyledons, biomass predominantly represents cell-wall material of xylem, which is formed during the genetically poorly characterized secondary growth of the vasculature. In Arabidopsis hypocotyls, initially proportional secondary growth of all tissues is followed by a phase of xylem expansion and fiber differentiation. The factors that control this transition are unknown. We observed natural variation in Arabidopsis hypocotyl secondary growth and its coordination with root secondary growth. Quantitative trait loci (QTL) analyses of a recombinant inbred line (RIL) population demonstrated separate genetic control of developmentally synchronized secondary-growth parameters. However, major QTL for xylem expansion and fiber differentiation correlated tightly and coincided with major flowering time QTL. Correlation between xylem expansion and flowering was confirmed in another RIL population and also found across Arabidopsis accessions. Gene-expression analyses suggest that xylem expansion is initiated after flowering induction but before inflorescence emergence. Consistent with this idea, transient activation of an inducer of flowering at the rosette stage promoted xylem expansion. Although the shoot was needed to trigger xylem expansion and can control it in a graft-transmissible fashion, the inflorescence stem was not required to sustain it. Collectively, our results suggest that flowering induction is the condition for xylem expansion in hypocotyl and root secondary growth.  相似文献   

15.
16.
Natural genetic variation in fatty acid synthesis and modification pathways determine the composition of vegetable oils, which are major components of human diet and renewable products. Based on known pathways we combined diversity and genetic analysis of metabolites to infer the existence of enzymes encoded by distinct loci, and associated these with specific elongation steps or subpathways. A total of 107 lines representing different Brassica genepools revealed considerable variation for 18 seed fatty acid products. The effect of genetic variation within a single biochemical step on subsequent products was demonstrated using a correlation matrix of scatterplots, and by calculating relative step yields. Surprisingly, diploid Brassica oleracea segregating populations had a similar range of variation for individual fatty acids as across the whole genepool. This allowed identification of 22 quantitative trait loci (QTL) associated with activity in the plastid, early stages of synthesis, desaturation, and elongases. Four QTL were assigned to early stages of synthesis, seven to subpathway specific or general elongase activity, one to ketoacyl acyl-carrier protein synthetase, and two each to fatty acid desaturase and either desaturase or fatty acyl-carrier protein thioesterase. An additional 10 QTL had distinct effects but were not assigned specific functions. Where contrasting behavior in more than one subpathway was detected, we inferred QTL specificity for particular combinations of substrate and product. The assignment of enzyme function to QTL was consistent with the known position of some Brassicaeae candidate genes and collinear regions of the Arabidopsis (Arabidopsis thaliana) genome.  相似文献   

17.
Lan TH  Paterson AH 《Genetics》2000,155(4):1927-1954
The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eight curd-related traits in Brassica oleracea. The 86 QTL may reflect allelic variation in as few as 67 different genetic loci and 54 ancestral genes. Although the locations of QTL affecting a trait occasionally corresponded between different populations or between different homeologous Brassica chromosomes, our data supported other molecular and morphological data in suggesting that the Brassica genus is rapidly evolving. Comparative data enabled us to identify a number of candidate genes from Arabidopsis that warrant further investigation to determine if some of them might account for Brassica QTL. The Arabidopsis/Brassica system is an important example of both the challenges and opportunities associated with extrapolation of genomic information from facile models to large-genome taxa including major crops.  相似文献   

18.
Naturally-occurring variation in K(+) concentrations between plant genotypes is potentially exploitable in a number of ways, including altering the relationship between K(+) accumulation and growth, enhancing salinity resistance, or improving forage quality. However, achieving these requires greater insight into the genetic basis of the variation in tissue K(+) concentrations. To this end, K(+) concentrations were measured in the shoots of 70 Arabidopsis thaliana accessions and a Cape Verdi Island/Landsberg erecta recombinant inbred line (RIL) population. The shoot K(+) concentrations expressed on the basis of fresh matter (KFM) or dry matter (KDM) were both broadly and normally distributed as was the shoot dry matter content per unit fresh weight (DMC). Using the data from the RILs, four quantitative trait loci (QTL) were identified for KFM and three for KDM. These were located on chromosomes 2, 3, 4, and 5. Two of the QTLs for KFM overlapped with those for KDM. None of these QTLs overlapped with those for fresh weight or dry weight, but the QTL for KDM located on chromosome 3 overlapped with one for DMC. In silico analysis was used to identify known or putative K(+) and cation transporter genes whose loci overlapped with the QTLs. In most cases, multiple genes were identified and the possible role of their gene products in determining shoot K(+) concentrations is discussed.  相似文献   

19.
20.
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号