首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Four integral membrane proteins, PomA, PomB, MotX, and MotY, are thought to be directly involved in torque generation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. Our previous study showed that PomA and PomB form a complex, which catalyzes sodium influx in response to a potassium diffusion potential. PomA forms a stable dimer when expressed in a PomB null mutant. To explore the possible functional dependence of PomA domains in adjacent subunits, we prepared a series of PomA dimer fusions containing different combinations of wild-type or mutant subunits. Introduction of the mutation P199L, which completely inactivates flagellar rotation, into either the first or the second half of the dimer abolished motility. The P199L mutation in monomeric PomA also altered the PomA-PomB interaction. PomA dimer with the P199L mutation even in one subunit also had no ability to interact with PomB, indicating that the both subunits in the dimer are required for the functional interaction between PomA and PomB. Flagellar rotation by wild-type PomA dimer was completely inactivated by phenamil, a sodium channel blocker. However, activity was retained in the presence of phenamil when either half of the dimer was replaced with a phenamil-resistant subunit, indicating that both subunits must bind phenamil for motility to be fully inhibited. These observations demonstrate that both halves of the PomA dimer function together to generate the torque for flagellar rotation.  相似文献   

2.
The four motor proteins PomA, PomB, MotX and MotY, which are believed to be stator proteins, are essential for motility by the Na(+)-driven flagella of Vibrio alginolyticus. When we purified the flagellar basal bodies, MotX and MotY were detected in the basal body, which is the supramolecular complex comprised of the rotor and the bushing, but PomA and PomB were not. By antibody labelling, MotX and MotY were detected around the LP ring. These results indicate that MotX and MotY associate with the basal body. The basal body had a new ring structure beneath the LP ring, which was named the T ring. This structure was changed or lost in the basal body from a DeltamotX or DeltamotY strain. The T ring probably comprises MotX and MotY. In the absence of MotX or MotY, we demonstrated that PomA and PomB were not localized to a cell pole. From the above results, we suggest that MotX and MotY of the T ring are involved in the incorporation and/or stabilization of the PomA/PomB complex in the motor.  相似文献   

3.
We have shown that a hybrid motor consisting of proton-type Rhodobacter sphaeroides MotA and sodium-type VIBRIO: alginolyticus PomB, MotX and MotY, can work as a sodium-driven motor in VIBRIO: cells. In this study, we tried to substitute the B subunits, which contain a putative ion-binding site in the transmembrane region. Rhodobacter sphaeroides MotB did not work with either MotA or PomA in Vibrio cells. Therefore, we constructed chimeric proteins (MomB), which had N-terminal MotB and C-terminal PomB. MomB proteins, with the entire transmembrane region derived from the H(+)-type MotB, gave rise to an Na(+) motor with MotA. The other two MomB proteins, in which the junction sites were within the transmembrane region, also formed Na(+) motors with PomA, but were changed for Na(+) or Li(+) specificity. These results show that the channel part consisting of the transmembrane regions from the A and B subunits can interchange Na(+)- and H(+)-type subunits and this can affect the ion specificity. This is the first report to have changed the specificity of the coupling ions in a bacterial flagellar motor.  相似文献   

4.
Four motor proteins, MotX, MotY, PomA, and PomB, have been identified as constituents of the Na(+)-driven flagellum of Vibrio species. In this study, the complete motX gene was cloned from Vibrio alginolyticus and shown to complement three mot mutations, motX94, motX115, and motX119, as well as a V. parahaemolyticus motX mutant. The motX94 mutant contains a frameshift at Val86 of MotX, while the motX115 and motX119 mutations comprise substitutions of Ala146 to Val and Gln 194 to amber, respectively. When MotX was overexpressed in Vibrio cells, the amount of MotY detected in the membrane fraction increased, and vice versa, suggesting that MotX and MotY mutually stabilize each other by interacting at the membrane level. When a plasmid containing the motX gene was introduced into motY mutants NMB117 (motY117) and VIO542 (motY542), the mutations were suppressed. In contrast, motY could not cause the recovery of any swarm-defective motX mutants studied. Considering the above evidence, we propose that MotX is more directly involved than MotY in the mechanical functioning of the Na(+)-type flagellar motor, and that MotY may stabilize MotX to support its interaction with other Mot proteins.  相似文献   

5.
Rotation of the sodium ion-driven polar flagellum of Vibrio alginolyticus requires the inner membrane sodium ion channel complex PomA/PomB and the outer membrane components MotX and MotY. None of the detergents used in this study were able to solubilize MotX when it was expressed alone. However, when co-expressed with MotY, MotX was solubilized by some detergents. The change in the solubility of MotX suggests that MotY interacts with MotX. In agreement with this, a pull-down assay showed the association of MotY with MotX. Solubilized MotX and MotY eluted in the void volume from a gel-filtration column, suggesting that MotX and MotY form a large oligomeric structure(s). In the absence of MotY, MotX affected membrane localization of the PomA/PomB complex and of PomB alone but not of PomA alone, suggesting an interaction between MotX and PomB. We propose that MotX exhibits multiple interactions with the other motor components, first with MotY for its localization to the outer membrane and then with the PomA/PomB complex through PomB for the motor rotation.  相似文献   

6.
The bacterial flagellar motor is a tiny molecular machine that uses a transmembrane flux of H(+) or Na(+) ions to drive flagellar rotation. In proton-driven motors, the membrane proteins MotA and MotB interact via their transmembrane regions to form a proton channel. The sodium-driven motors that power the polar flagellum of Vibrio species contain homologs of MotA and MotB, called PomA and PomB. They require the unique proteins MotX and MotY. In this study, we investigated how ion selectivity is determined in proton and sodium motors. We found that Escherichia coli MotA/B restore motility in DeltapomAB Vibrio alginolyticus. Most hypermotile segregants isolated from this weakly motile strain contain mutations in motB. We constructed proteins in which segments of MotB were fused to complementary portions of PomB. A chimera joining the N terminus of PomB to the periplasmic C terminus of MotB (PotB7(E)) functioned with PomA as the stator of a sodium motor, with or without MotX/Y. This stator (PomA/PotB7(E)) supported sodium-driven motility in motA or motB E.coli cells, and the swimming speed was even higher than with the original stator of E.coli MotA/B. We conclude that the cytoplasmic and transmembrane domains of PomA/B are sufficient for sodium-driven motility. However, MotA expressed with a B subunit containing the N terminus of MotB fused to the periplasmic domain of PomB (MomB7(E)) supported sodium-driven motility in a MotX/Y-dependent fashion. Thus, although the periplasmic domain of PomB is not necessary for sodium-driven motility in a PomA/B motor, it can convert a MotA/B proton motor into a sodium motor.  相似文献   

7.
The marine bacterium Vibrio alginolyticus has four motor components, PomA, PomB, MotX, and MotY, responsible for its Na(+)-driven flagellar rotation. PomA and PomB are integral inner membrane proteins having four and one transmembrane segments (TMs), respectively, which are thought to form an ion channel complex. First, site-directed Cys mutagenesis was systematically performed from Asp-24 to Glu-41 of PomB, and the resulting mutant proteins were examined for susceptibility to a sulfhydryl reagent. Secondly, the Cys substitutions at the periplasmic boundaries of the PomB TM (Ser-38) and PomA TMs (Gly-23, Ser-34, Asp-170, and Ala-178) were combined. Cross-linked products were detected for the combination of PomB-S38C and PomA-D170C mutant proteins. The Cys substitutions in the periplasmic boundaries of PomA TM3 (from Met-169 to Asp-171) and the PomB TM (from Leu-37 to Ser-40) were combined to construct a series of double mutants. Most double mutations reduced the motility, whereas each single Cys substitution slightly affected it. Although the motility of the strain carrying PomA-D170C and PomB-S38C was significantly inhibited, it was recovered by reducing reagent. The strain with this combination showed a lower affinity for Na(+) than the wild-type combination. PomA-D148C and PomB-P16C, which are located at the cytoplasmic boundaries of PomA TM3 and the PomB TM, also formed the cross-linked product. From these lines of evidence, we infer that TM3 of PomA and the TM of PomB are in close proximity over their entire length and that cooperation between these two TMs is required for coupling of Na(+) conduction to flagellar rotation.  相似文献   

8.
The bacterial flagellar motor is a molecular machine that converts ion flux across the membrane into flagellar rotation. The coupling ion is either a proton or a sodium ion. The polar flagellar motor of the marine bacterium Vibrio alginolyticus is driven by sodium ions, and the four protein components, PomA, PomB, MotX, and MotY, are essential for motor function. Among them, PomA and PomB are similar to MotA and MotB of the proton-driven motors, respectively. PomA shows greatest similarity to MotA of the photosynthetic bacterium Rhodobacter sphaeroides. MotA is composed of 253 amino acids, the same length as PomA, and 40% of its residues are identical to those of PomA. R. sphaeroides MotB has high similarity only to the transmembrane region of PomB. To examine whether the R. sphaeroides motor genes can function in place of the pomA and pomB genes of V. alginolyticus, we constructed plasmids including both motA and motB or motA alone and transformed them into missense and null pomA-paralyzed mutants of V. alginolyticus. The transformants from both strains showed restored motility, although the swimming speeds were low. On the other hand, pomB mutants were not restored to motility by any plasmid containing motA and/or motB. Next, we tested which ions (proton or sodium) coupled to the hybrid motor function. The motor did not work in sodium-free buffer and was inhibited by phenamil and amiloride, sodium motor-specific inhibitors, but not by a protonophore. Thus, we conclude that the proton motor component, MotA, of R. sphaeroides can generate torque by coupling with the sodium ion flux in place of PomA of V. alginolyticus.  相似文献   

9.
The proteins PomA, PomB, MotX, and MotY are essential for the motor function of Na+-driven flagella in Vibrio spp. Both MotY and MotX have the two cysteine residues (one of which is in a conserved tetrapeptide [CQLV]) that are inferred to form an intramolecular disulfide bond. The cysteine mutants of MotY prevented the formation of an intramolecular disulfide bond, which is presumably important for protein stability. Disruption of the disulfide bridge in MotX by site-directed mutagenesis resulted in increased instability, which did not, however, affect the motility of the cells. These lines of evidence suggest that the intramolecular disulfide bonds are involved in the stability of both proteins, but only MotY requires the intramolecular bridge for proper function.  相似文献   

10.
It is known that PomA and PomB form a complex that functions as a Na(+) channel and generates the torque of the Na(+)-driven flagellar motor of Vibrio alginolyticus. It has been suggested that PomA works as a dimer and that the PomA/PomB complex is composed of four PomA and two PomB molecules. PomA does not have any Cys residues and PomB has three Cys residues. Therefore, a mutant PomB (PomB(cl)) whose three Cys residues were replaced by Ala was constructed and found to be motile as well. We carried out gel filtration analysis and examined the effect of cross-linking between the Cys residues of PomB on the formation of the PomA/PomB complex. In the presence of dithiothreitol (DTT), the elution profile of the PomA/PomB complex was shifted to a lower apparent molecular mass fraction similar to that of the complex of the wild-type PomA and PomB(cl) mutant. Next, to analyze the arrangement of PomA molecules in the complex, we introduced the mutation P172C, which has been shown to cross-link PomA molecules, into tandem PomA dimers (PomA approximately PomA). These mutant dimers showed a dominant-negative effect. DTT could restore the function of PomA approximately P172C and P172C approximately P172C, but not P172C approximately PomA. Interdimer and intradimer cross-linked products were observed; the interdimer cross-linked products could be assembled with PomB. The formation of the interdimer cross-link suggests that the channel complex of the Na(+)-driven flagellar motor is composed of two units of a complex consisting of two PomA and one PomB, and that they might interact with each other via not only PomA but also PomB.  相似文献   

11.
Four proteins, PomA, PomB, MotX, and MotY, appear to be involved in force generation of the sodium-driven polar flagella of Vibrio alginolyticus. Among these, PomA and PomB seem to be associated and to form a sodium channel. By using antipeptide antibodies against PomA or PomB, we carried out immunoprecipitation to verify whether these proteins form a complex and examined the in vivo stabilities of PomA and PomB. As a result, we could demonstrate that PomA and PomB functionally interact with each other.  相似文献   

12.
The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitute a proton channel. MotX was proposed to be a component of a sodium channel. Here we identified additional sodium motor genes, pomA and pomB, in V. alginolyticus. Unexpectedly, PomA and PomB have similarities to MotA and MotB, respectively, especially in the predicted transmembrane regions. These results suggest that PomA and PomB may be sodium-conducting channel components of the sodium-driven motor and that the motor part consists of the products of at least four genes, pomA, pomB, motX, and motY. Furthermore, swimming speed was controlled by the expression level of the pomA gene, suggesting that newly synthesized PomA proteins, which are components of a force-generating unit, were successively integrated into the defective motor complexes. These findings imply that Na+-driven flagellar motors may have similar structure and function as proton-driven motors, but with some interesting differences as well, and it is possible to compare and study the coupling mechanisms of the sodium and proton ion flux for the force generation.  相似文献   

13.
Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.  相似文献   

14.
Rotation of the sodium-driven polar flagella of Vibrio alginolyticus requires four motor proteins: PomA, PomB, MotX and MotY. MotX and MotY, which are unique components of the sodium-driven motor of Vibrio, have been believed to be localized in the inner (cytoplasmic) membrane via their N-terminal hydrophobic segments. Here we show that MotX and MotY colocalize to the outer membrane. Both proteins, when expressed together, were detected in the outer membrane fraction separated by sucrose density gradient centrifugation. As mature MotX and MotY proteins do not have N-terminal hydrophobic segments, the N-termini of the primary translation products must have signal sequences that are removed upon translocation across the inner membrane. Moreover, MotX and MotY require each other for efficient localization to the outer membrane. Based on these lines of evidence, we propose that MotX and MotY form a complex in the outer membrane. This is the first case that describes motor proteins function in the outer membrane for flagellar rotation.  相似文献   

15.
PomA, a homolog of MotA in the H+-driven flagellar motor, is an essential component for torque generation in the Na+-driven flagellar motor. Previous studies suggested that two charged residues, R90 and E98, which are in the single cytoplasmic loop of MotA, are directly involved in this process. These residues are conserved in PomA of Vibrio alginolyticus as R88 and E96, respectively. To explore the role of these charged residues in the Na+-driven motor, we replaced them with other amino acids. However, unlike in the H+-driven motor, both of the single and the double PomA mutants were functional. Several other positively and negatively charged residues near R88 and E96, namely K89, E97 and E99, were neutralized. Motility was retained in a strain producing the R88A/K89A/E96Q/E97Q/E99Q (AAQQQ) PomA protein. The swimming speed of the AAQQQ strain was as fast as that of the wild-type PomA strain, but the direction of motor rotation was abnormally counterclockwise-biased. We could, however, isolate non-motile or poorly motile mutants when certain charged residues in PomA were reversed or neutralized. The charged residues at positions 88-99 of PomA may not be essential for torque generation in the Na+-driven motor and might play a role in motor function different from that of the equivalent residues of the H+-driven motor.  相似文献   

16.
Flagellar motor proteins, PomA and PomB, are essential for converting the sodium motive force into rotational energy in the Na(+)-driven flagella motor of Vibrio alginolyticus. PomA and PomB, which are cytoplasmic membrane proteins, together comprise the stator complex of the motor and form a Na(+) channel. We tried to synthesize PomA and PomB by using the cell-free protein synthesis system, PURESYSTEM. We succeeded in doing so in the presence of liposomes, and showed an interaction between them using the pull-down assay. It seems likely that the proteins are inserted into liposomes and assembled spontaneously. The N-terminal region of in vitro synthesized PomB appeared to be lost, but this problem was suppressed by fusing GFP to the N-terminus of PomB or by mutagenesis at Pro-11 or Pro-12. A structural change of the N-terminal region of PomB by these modifications may prevent cleavage during protein synthesis in PURESYSTEM. The mutations did not affect the functioning of the motor. Using this system, biochemical analysis of PomA and PomB can be performed easily and efficiently.  相似文献   

17.
The polar flagellar motor of Vibrio alginolyticus rotates using Na(+) influx through the stator, which is composed of 2 subunits, PomA and PomB. About a dozen stators dynamically assemble around the rotor, depending on the Na(+) concentration in the surrounding environment. The motor torque is generated by the interaction between the cytoplasmic domain of PomA and the C-terminal region of FliG, a component of the rotor. We had shown previously that mutations of FliG affected the stator assembly around the rotor, which suggested that the PomA-FliG interaction is required for the assembly. In this study, we examined the effects of various mutations mainly in the cytoplasmic domain of PomA on that assembly. All mutant stators examined, which resulted in the loss of motor function, assembled at a lower level than did the wild-type PomA. A His tag pulldown assay showed that some mutations in PomA reduced the PomA-PomB interaction, but other mutations did not. Next, we examined the ion conductivity of the mutants using a mutant stator that lacks the plug domain, PomA/PomB(ΔL)(Δ41-120), which impairs cell growth by overproduction, presumably because a large amount of Na(+) is conducted into the cells. Some PomA mutations suppressed this growth inhibition, suggesting that such mutations reduce Na(+) conductivity, so that the stators could not assemble around the rotor. Only the mutation H136Y did not impair the stator formation and ion conductivity through the stator. We speculate that this particular mutation may affect the PomA-FliG interaction and prevent activation of the stator assembly around the rotor.  相似文献   

18.
MotX, the channel component of the sodium-type flagellar motor.   总被引:15,自引:9,他引:6       下载免费PDF全文
Thrust for propulsion of flagellated bacteria is generated by rotation of a propeller, the flagellum. The power to drive the polar flagellar rotary motor of Vibrio parahaemolyticus is derived from the transmembrane potential of sodium ions. Force is generated by the motor on coupling of the movement of ions across the membrane to rotation of the flagellum. A gene, motX, encoding one component of the torque generator has been cloned and sequenced. The deduced protein sequence is 212 amino acids in length. MotX was localized to the membrane and shown to interact with MotY, which is the presumed stationary component of the motor. Overproduction of MotX, but not that of a nonfunctional mutant MotX, was lethal to Escherichia coli. The rate of lysis caused by induction of motX was proportional to the sodium ion concentration. Li+ and K+ substituted for Na+ to promote lysis, while Ca2+ did not enhance lysis. Protection from the lethal effects of induction of motX was afforded by the sodium channel blocker amiloride. The data suggest that MotX forms a sodium channel. The deduced protein sequence for MotX shows no homology to its ion-conducting counterpart in the proton-driven motor; however, in possessing only one hydrophobic domain, it resembles other channels formed by small proteins with single membrane-spanning domains.  相似文献   

19.
Bacterial flagella are powered by a motor that converts a transmembrane electrochemical potential of either H(+) or Na(+) into mechanical work. In Escherichia coli, the MotA and MotB proteins form the stator and function in proton translocation, whereas the FliG protein is located on the rotor and is involved in flagellar assembly and torque generation. The sodium-driven polar flagella of Vibrio species contain homologs of MotA and MotB, called PomA and PomB, and also contain two other membrane proteins called MotX and MotY, which are essential for motor rotation and that might also function in ion conduction. Deletions in pomA, pomB, motX, or motY in Vibrio cholerae resulted in a nonmotile phenotype, whereas deletion of fliG gave a nonflagellate phenotype. fliG genes on plasmids complemented fliG-null strains of the parent species but not fliG-null strains of the other species. FliG-null strains were complemented by chimeric FliG proteins in which the C-terminal domain came from the other species, however, implying that the C-terminal part of FliG can function in conjunction with the ion-translocating components of either species. A V. cholerae strain deleted of pomA, pomB, motX, and motY became weakly motile when the E. coli motA and motB genes were introduced on a plasmid. Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil. We conclude that the E. coli proton motor components MotA and MotB can function in place of the motor proteins of V. cholerae and that the hybrid motors are driven by the proton motive force.  相似文献   

20.
The bacterial flagellar motor is driven by the electrochemical potential of specific ions, H+ or Na+. The motor consists of a rotor and stator, and their interaction generates rotation. The stator, which is composed of PomA and PomB in the Na+ motor of Vibrio alginolyticus , is thought to be a torque generator converting the energy of ion flux into mechanical power. We found that specific mutations in PomB, including D24N, F33C and S248F, which caused motility defects, affected the assembly of stator complexes into the polar flagellar motor using green fluorescent protein-fused stator proteins. D24 of PomB is the predicted Na+-binding site. Furthermore, we demonstrated that the coupling ion, Na+, is required for stator assembly and that phenamil (an inhibitor of the Na+-driven motor) inhibited the assembly. Carbonyl cyanide m -chlorophenylhydrazone, which is a proton ionophore that collapses the sodium motive force in this organism at neutral pH, also inhibited the assembly. Thus we conclude that the process of Na+ influx through the channel, including Na+ binding, is essential for the assembly of the stator complex to the flagellar motor as well as for torque generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号