首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) signaling in vertebrates is well characterized and involves the heme-nitric oxide/oxygen-binding (H-NOX) domain of soluble guanylate cyclase as a selective NO sensor. In contrast, little is known about the biological role or signaling output of bacterial H-NOX proteins. Here, we describe a molecular pathway for H-NOX signaling in Shewanella oneidensis. NO stimulates biofilm formation by controlling the levels of the bacterial secondary messenger cyclic diguanosine monophosphate (c-di-GMP). Phosphotransfer profiling was used to map the connectivity of a multicomponent signaling network that involves integration from two histidine kinases and branching to three response regulators. A feed-forward loop between response regulators with phosphodiesterase domains and phosphorylation-mediated activation intricately regulated c-di-GMP levels. Phenotypic characterization established a link between NO signaling and biofilm formation. Cellular adhesion may provide a protection mechanism for bacteria against reactive and damaging NO. These results are broadly applicable to H-NOX-mediated NO signaling in bacteria.  相似文献   

2.
Bacteria employ two-component signaling to detect and respond to environmental stimuli. In essence, two-component signaling relies on a protein called a response regulator that can elicit a change in gene expression or protein function in response to phosphoryl transfer from a histidine kinase. Phosphorylation of the associated histidine kinase is regulated by detection of an environmental signal, thus linking sensing to cellular response. Recently, it has been suggested that H-NOX (Heme-nitric oxide/oxygen binding) proteins may act as nitric oxide (NO) sensors in two-component signaling systems. NO/H-NOX regulated histidine kinases have been reported, but their cognate response regulators have yet to be identified. In this work we provide biochemical characterization of a complete NO/H-NOX-regulated two-component signaling pathway in the biofilm-dwelling marine bacterium, Pseudoalteromonas atlantica. In P. atlantica, as is typical for bacteria that code for H-NOX, an hnoX gene is found in the same operon as a gene coding for a two-component signaling histidine kinase (H-NOX-associated histidine kinase; HahK). We find that HahK is capable of autophosphorylation in vitro and that NO-bound H-NOX inhibits HahK activity, implicating H-NOX as a selective NO sensor. The cognate response regulator, a protein annotated as a cyclic-di-GMP processing enzyme that we have named HarR (H-NOX-associated response regulator), was identified using bioinformatics tools. Phosphoryl transfer from HahK to HarR has been established. This report reveals the first biochemical characterization of an H-NOX-associated response regulator and contributes to a deeper understanding of NO/H-NOX signaling in bacteria.  相似文献   

3.
The heme cofactor in soluble guanylate cyclase (sGC) is a selective receptor for NO, an important signaling molecule in eukaryotes. The sGC heme domain has been localized to the N-terminal 194 amino acids of the beta1 subunit of sGC and is a member of a family of conserved hemoproteins, called the H-NOX family (Heme-Nitric Oxide and/or OXygen-binding domain). Three new members of this family have now been cloned and characterized, two proteins from Legionella pneumophila (L1 H-NOX and L2 H-NOX) and one from Nostoc punctiforme (Np H-NOX). Like sGC, L1 H-NOX forms a 5-coordinate Fe(II)-NO complex. However, both L2 H-NOX and Np H-NOX form temperature-dependent mixtures of 5- and 6-coordinate Fe(II)-NO complexes; at low temperature, they are primarily 6-coordinate, and at high temperature, the equilibrium is shifted toward a 5-coordinate geometry. This equilibrium is fully reversible with temperature in the absence of free NO. This process is analyzed in terms of a thermally labile proximal Fe(II)-His bond and suggests that in both the 5- and 6-coordinate Fe(II)-NO complexes of L2 H-NOX and Np H-NOX, NO is bound in the distal heme pocket of the H-NOX fold. NO dissociation kinetics for L1 H-NOX and L2 H-NOX have been determined and support a model in which NO dissociates from the distal side of the heme in both 5- and 6-coordinate complexes.  相似文献   

4.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   

5.
Soluble guanylate cyclases (s GC s) are eukaryotic heme sensor proteins that selectively bind NO in the presence of a large excess of the similar diatomic gas, O(2); this discrimination is essential for NO signaling. Recent discoveries place sGC in the H-NOX (heme nitric oxide and/or oxygen binding domain) family that includes bacterial proteins. The defining characteristic of this family is that some H-NOX proteins tightly bind O(2) whereas others, such as sGC, show no measurable affinity for O(2). A molecular basis for this ligand selectivity has now been established. A distal pocket tyrosine is requisite for O(2) binding and is used to kinetically distinguish between NO and O(2). In the absence of this tyrosine, the O(2) dissociation rate is so fast that the O(2) complex is never formed, whereas the rate of NO dissociation remains essentially unchanged, thus providing discrimination.  相似文献   

6.
Eukaryotic nitric oxide (NO) signaling involves modulation of cyclic GMP (cGMP) levels through activation of the soluble isoform of guanylate cyclase (sGC). sGC is a heterodimeric hemoprotein that contains a Heme-Nitric oxide and OXygen binding (H-NOX) domain, a Per/ARNT/Sim (PAS) domain, a coiled-coil (CC) domain, and a catalytic domain. To evaluate the role of these domains in regulating the ligand binding properties of the heme cofactor of NO-sensitive sGC, we constructed chimeras by swapping the rat β1 H-NOX domain with the homologous region of H-NOX domain-containing proteins from Thermoanaerobacter tengcongensis, Vibrio cholerae, and Caenorhabditis elegans (TtTar4H, VCA0720, and Gcy-33, respectively). Characterization of ligand binding by electronic absorption and resonance Raman spectroscopy indicates that the other rat sGC domains influence the bacterial and worm H-NOX domains. Analysis of cGMP production in these proteins reveals that the chimeras containing bacterial H-NOX domains exhibit guanylate cyclase activity, but this activity is not influenced by gaseous ligand binding to the heme cofactor. The rat-worm chimera containing the atypical sGC Gcy-33 H-NOX domain was weakly activated by NO, CO, and O(2), suggesting that atypical guanylate cyclases and NO-sensitive guanylate cyclases have a common molecular mechanism for enzyme activation. To probe the influence of the other sGC domains on the mammalian sGC heme environment, we generated heme pocket mutants (Pro118Ala and Ile145Tyr) in the β1 H-NOX construct (residues 1-194), the β1 H-NOX-PAS-CC construct (residues 1-385), and the full-length α1β1 sGC heterodimer (β1 residues 1-619). Spectroscopic characterization of these proteins shows that interdomain communication modulates the coordination state of the heme-NO complex and the heme oxidation rate. Taken together, these findings have important implications for the allosteric mechanism of regulation within H-NOX domain-containing proteins.  相似文献   

7.
Nitric oxide signaling: no longer simply on or off   总被引:1,自引:0,他引:1  
Nitric oxide (NO) triggers various physiological responses in numerous tissues by binding and activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. In vivo, basal NO/cGMP signaling maintains a resting state in target cells (for example, resting tone in smooth muscle), but an acute burst of NO/cGMP signaling triggers rapid responses (such as smooth muscle relaxation). Recent studies have shown that the sGC heterodimer comprises at least four modular domains per subunit. The N-terminal heme domain is a member of the H-NOX family of domains that bind O(2) and/or NO and are conserved in prokaryotes and higher eukaryotes. Studies of these domains have uncovered the molecular basis for ligand discrimination by sGC. Other work has identified two temporally distinct states of sGC activation by NO: formation of a stable NO-heme complex results in a low-activity species, and additional NO produces a transient fully active enzyme. Nucleotides also allosterically modulate the duration and intensity of enzyme activity. Together, these studies suggest a biochemical basis for the two distinct types of NO/cGMP signal observed in vivo.  相似文献   

8.
Soluble guanylate cyclases (sGCs) function as heme sensors that selectively bind nitric oxide (NO), triggering reactions essential to animal physiology. Recent discoveries place sGCs in the H-NOX family (heme nitric oxide/oxygen-binding domain), which includes bacterial proteins from aerobic and anaerobic organisms. Some H-NOX proteins tightly bind oxygen (O2), whereas others show no measurable affinity for O2, providing the basis for selective NO signaling in aerobic cells. Using a series of wild-type and mutant H-NOXs, we established a molecular basis for ligand discrimination. A distal pocket tyrosine is requisite for O2 binding in the H-NOX family. These data suggest that sGC uses a kinetic selection against O2; we propose that the O2 dissociation rate in the absence of this tyrosine is fast and that a stable O2 complex does not form.  相似文献   

9.
Liu N  Xu Y  Hossain S  Huang N  Coursolle D  Gralnick JA  Boon EM 《Biochemistry》2012,51(10):2087-2099
Although several reports have documented nitric oxide (NO) regulation of biofilm formation, the molecular basis of this phenomenon is unknown. In many bacteria, an H-NOX (heme-nitric oxide/oxygen-binding) gene is found near a diguanylate cyclase (DGC) gene. H-NOX domains are conserved hemoproteins that are known NO sensors. It is widely recognized that cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates the transition between motility and biofilm. Therefore, NO may influence biofilm formation through H-NOX regulation of DGC, thus providing a molecular-level explanation for NO regulation of biofilm formation. This work demonstrates that, indeed, NO-bound H-NOX negatively affects biofilm formation by directly regulating c-di-GMP turnover in Shewanella woodyi strain MS32. Exposure of wild-type S. woodyi to a nanomolar level of NO resulted in the formation of thinner biofilms, and less intracellular c-di-GMP, than in the absence of NO. Also, a mutant strain in the gene encoding SwH-NOX showed a decreased level of biofilm formation (and a decreased amount of intracellular c-di-GMP) with no change observed upon NO addition. Furthermore, using purified proteins, it was demonstrated that SwH-NOX and SwDGC are binding partners. SwDGC is a dual-functioning DGC; it has diguanylate cyclase and phosphodiesterase activities. These data indicate that NO-bound SwH-NOX enhances c-di-GMP degradation, but not synthesis, by SwDGC. These results support the biofilm growth data and indicate that S. woodyi senses nanomolar NO with an H-NOX domain and that SwH-NOX regulates SwDGC activity, resulting in a reduction in c-di-GMP concentration and a decreased level of biofilm growth in the presence of NO. These data provide a detailed molecular mechanism for NO regulation of c-di-GMP signaling and biofilm formation.  相似文献   

10.
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.  相似文献   

11.
Soluble guanylate cyclase (sGC) is a nitric oxide (NO) sensing hemoprotein that has been found in eukaryotes from Drosophila to humans. Prokaryotic proteins with significant homology to the heme domain of sGC have recently been identified through genomic analysis. This family of heme proteins has been named the H-NOX domain, for Heme-Nitric oxide/OXygen binding domain. The key observation from initial studies in this family is that some members, those proteins from most eukaryotes and facultative aerobic prokaryotes, bind NO in a five-coordinate heme complex, but do not bind oxygen (O(2)), the same ligand binding characteristics as sGC. H-NOX family members from obligate aerobic prokaryotes bind O(2) and NO in six-coordinate complexes, similar to the globins and other O(2)-sensing heme proteins. The molecular factors that contribute to these differences in ligand specificity, within a family of sequence related proteins, are the subject of this review.  相似文献   

12.
Soluble guanylate cyclase (sGC) is a nitric oxide- (NO-) sensing hemoprotein that has been found in eukaryotes from Drosophila to humans. Prokaryotic proteins with significant homology to the heme domain of sGC have recently been identified through genomic analysis. Characterization of two of these proteins is reported here. The first is a 181 amino acid protein cloned from Vibrio cholerae (VCA0720) that is encoded in a histidine kinase-containing operon. The ferrous unligated form of VCA0720 is 5-coordinate, high-spin. The CO complex is low-spin, 6-coordinate, and the NO complex is high-spin and 5-coordinate. These ligand-binding properties are very similar to those of sGC. The second protein is the N-terminal 188 amino acids of Tar4 (TtTar4H), a predicted methyl-accepting chemotaxis protein (MCP) from the strict anaerobe Thermoanaerobacter tengcongensis. TtTar4H forms a low-spin, 6-coordinate ferrous-oxy complex, the first of this sGC-related family that binds O2. TtTar4H has ligand-binding properties similar to those of the heme-containing O2 sensors such as AxPDEA1. sGC does not bind O2 despite having a porphyrin with a histidyl ligand like the globins. The results reported here, with sequence-related proteins from prokaryotes but in the same family as the sGC heme domain, show that these proteins have evolved to discriminate between ligands such as NO and O2; hence, we term this family H-NOX domains (heme-nitric oxide/oxygen).  相似文献   

13.
Nitric oxide (NO) signaling regulates key processes in cardiovascular physiology, specifically vasodilation, platelet aggregation, and leukocyte rolling. Soluble guanylate cyclase (sGC), the mammalian NO sensor, transduces an NO signal into the classical second messenger cyclic GMP (cGMP). NO binds to the ferrous (Fe2+) oxidation state of the sGC heme cofactor and stimulates formation of cGMP several hundred-fold. Oxidation of the sGC heme to the ferric (Fe3+) state desensitizes the enzyme to NO. The heme-oxidized state of sGC has emerged as a potential therapeutic target in the treatment of cardiovascular disease. Here, we investigate the molecular mechanism of NO desensitization and find that sGC undergoes a reductive nitrosylation reaction that is coupled to the S-nitrosation of sGC cysteines. We further characterize the kinetics of NO desensitization and find that heme-assisted nitrosothiol formation of β1Cys-78 and β1Cys-122 causes the NO desensitization of ferric sGC. Finally, we provide evidence that the mechanism of reductive nitrosylation is gated by a conformational change of the protein. These results yield insights into the function and dysfunction of sGC in cardiovascular disease.  相似文献   

14.
Bacteria use small molecules to assess the density and identity of nearby organisms and formulate a response. This process, called quorum sensing (QS), commonly regulates bioluminescence, biofilm formation, and virulence. Vibrio harveyi have three described QS circuits. Each involves the synthesis of a molecule that regulates phosphorylation of its cognate receptor kinase. Each receptor exchanges phosphate with a common phosphorelay protein, LuxU, which ultimately regulates bioluminescence. Here, we show that another small molecule, nitric oxide (NO), participates in QS through LuxU. V. harveyi display a NO concentration-dependent increase in bioluminescence that is regulated by an hnoX gene. We demonstrate that H-NOX is a NO sensor and NO/H-NOX regulates phosphorylation of a kinase that transfers phosphate to LuxU. This study reveals the discovery of a fourth QS pathway in V. harveyi and suggests that bacteria use QS to integrate not only the density of bacteria but also other diverse information about their environment into decisions about gene expression.  相似文献   

15.
Signal transduction histidine kinases (STHK) are key for sensing environmental stresses, crucial for cell survival, and attain their sensing ability using small molecule binding domains. The N-terminal domain in an STHK from Nostoc punctiforme is of unknown function yet is homologous to the central region in soluble guanylyl cyclase (sGC), the main receptor for nitric oxide (NO). This domain is termed H-NOXA (or H-NOBA) because it is often associated with the heme-nitric oxide/oxygen binding (H-NOX) domain. A structure-function approach was taken to investigate the role of H-NOXA in STHK and sGC. We report the 2.1 A resolution crystal structure of the dimerized H-NOXA domain of STHK, which reveals a Per-Arnt-Sim (PAS) fold. The H-NOXA monomers dimerize in a parallel arrangement juxtaposing their N-terminal helices and preceding residues. Such PAS dimerization is similar to that previously observed for EcDOS, AvNifL, and RmFixL. Deletion of 7 N-terminal residues affected dimer organization. Alanine scanning mutagenesis in sGC indicates that the H-NOXA domains of sGC could adopt a similar dimer organization. Although most putative interface mutations did decrease sGCbeta1 H-NOXA homodimerization, heterodimerization of full-length heterodimeric sGC was mostly unaffected, likely due to the additional dimerization contacts of sGC in the coiled-coil and catalytic domains. Exceptions are mutations sGCalpha1 F285A and sGCbeta1 F217A, which each caused a drastic drop in NO stimulated activity, and mutations sGCalpha1 Q368A and sGCbeta1 Q309A, which resulted in both a complete lack of activity and heterodimerization. Our structural and mutational results provide new insights into sGC and STHK dimerization and overall architecture.  相似文献   

16.
Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the approximately 100-kDa N-terminal heterodimeric fragment and increases the CO affinity by approximately 50-fold to 1.7 microm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k(6-5) = 12.8 s(-1)). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to approximately 30 microm. NO release is biphasic in the absence of YC-1 (k(off1) = 0.10 s(-1) and k(off2) = 0.0015 s(-1)); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the alpha subunit with importance for heme binding.  相似文献   

17.
Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron-His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue aspartate 102 (D102) with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies D102 as having a key role in NO activation following breakage of the iron-His bond.  相似文献   

18.
Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is the major cytosolic receptor for NO, catalyzing the conversion of GTP to cGMP. In a search for proteins specifically interacting with human sGC, we have identified the multidomain protein AGAP1, the prototype of an ArfGAP protein with a GTPase-like domain, Ankyrin repeats, and a pleckstrin homology domain. AGAP1 binds through its carboxyl terminal portion to both the alpha1 and beta1 subunits of sGC. We demonstrate that AGAP1 mRNA and protein are co-expressed with sGC in human, murine, and rat cells and tissues and that the two proteins interact in vitro and in vivo. We also show that AGAP1 is prone to tyrosine phosphorylation by Src-like kinases and that tyrosine phosphorylation potently increases the interaction between AGAP1 and sGC, indicating that complex formation is modulated by reversible phosphorylation. Our findings may hint to a potential role of AGAP1 in integrating signals from Arf, NO/cGMP, and tyrosine kinase signaling pathways.  相似文献   

19.
Developmental studies in both vertebrates and invertebrates implicate an involvement of nitric oxide (NO) signaling in cell proliferation, neuronal motility, and synaptic maturation. However, it is unknown whether NO plays a role in the development of the human nervous system. We used a model of human neuronal precursor cells from a well-characterized teratocarcinoma cell line (NT2). The precursor cells proliferate during retinoic acid treatment as spherical aggregate culture that stains for nestin and βIII-tubulin. Cells migrate out of the aggregates to acquire fully differentiated neuronal phenotypes. The cells express neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), an enzyme that synthesizes cGMP upon activation by NO. The migration of the neuronal precursor cell is blocked by the use of nNOS, sGC, and protein kinase G (PKG) inhibitors. Inhibition of sGC can be rescued by a membrane permeable analog of cGMP. In gain of function experiments the application of a NO donor and cGMP analog facilitate cell migration. Our results from the differentiating NT2 model neurons point towards a vital role of the NO/cGMP/PKG signaling cascade as positive regulator of cell migration in the developing human brain.  相似文献   

20.
Nitric oxide (NO) is generated by tumor, stromal and endothelial cells and plays a multifaceted role in tumor biology. Many physiological functions of NO are mediated by soluble guanylyl cyclase (sGC) and NO/sGC signaling has been shown to promote proliferation and survival of ovarian cancer cells. However, how NO/sGC signaling is modulated in ovarian cancer cells has not been studied. The evolutionarily conserved Notch signaling pathway plays an oncogenic role in ovarian cancer. Here, we report that all three ovarian cancer cell lines we examined express a higher level of GUCY1B3 (the β subunit of sGC) compared to non-cancerous immortalized ovarian surface epithelial (IOSE) cell lines. Interestingly, the highest expression of GUCY1B3 in ovarian cancer OVCAR3 cells is concurrent with the expression of Notch3. In IOSE cells, forced activation of Notch3 increases the expression of GUCY1B3, NO-induced cGMP production, and the expression of cGMP-dependent protein kinase (PKG), thereby enhancing NO- and cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP, a direct PKG substrate protein). In contrast, inhibition of Notch by DAPT reduces GUCY1B3 expression and NO-induced cGMP production and VASP phosphorylation in OVCAR3 cells. Finally, we confirmed that inhibition of sGC by ODQ decreases growth of ovarian cancer cells. Together, our work demonstrates that Notch is a positive regulator of NO/sGC signaling in IOSE and ovarian cancer cells, providing the first evidence that Notch and NO signaling pathways interact in IOSE and ovarian cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号