首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Neuromuscular synapse formation is brought about by a complex bi-directional exchange of information between the innervating motor neuron and its target skeletal muscle fiber. Agrin, a heparin sulfate proteoglycan, is released from the motor nerve terminal to activate its muscle-specific kinase (MuSK) receptor that leads to a second messenger cascade requiring rapsyn to ultimately bring about AChR clustering in the muscle membrane. Rapsyn performs many functions in skeletal muscle. First, rapsyn and AChRs co-target to the postsynatic apparatus. Second, rapsyn may self associate to stabilize and promote AChR clustering. Third, rapsyn is essential for AChR cluster formation. Fourth, rapsyn is required to transduce the agrin-evoked MuSK phosphorylation signal to AChRs. Finally, rapsyn links AChRs to the utrophin-associated complex, which appears to be required for AChR stabilization as well as maturation of the neuromuscular junction. Proteins within the utrophin-associated complex such as α-dystrobrevin and α-syntrophin are also important for signaling events that affect neuromuscular synapse stability and function. Here we review our current understanding of the role of the postsynaptic-submembrane machinery involving rapsyn and the utrophin-associated complex at the neuromuscular synapse. In addition we briefly review how these studies of the neuromuscular junction relate to GABAergic and glycinergic synapses in the CNS.  相似文献   

4.
The collagen-tailed form of acetylcholinesterase (ColQ-AChE) is the major if not unique form of the enzyme associated with the neuromuscular junction (NMJ). This enzyme form consists of catalytic and non-catalytic subunits encoded by separate genes, assembled as three enzymatic tetramers attached to the three-stranded collagen-like tail (ColQ). This synaptic form of the enzyme is tightly attached to the basal lamina associated with the glycosaminoglycan perlecan. Fasciculin-2 is a snake toxin that binds tightly to AChE. Localization of junctional AChE on frozen sections of muscle with fluorescent Fasciculin-2 shows that the labeled toxin dissociates with a half-life of about 36h. The fluorescent toxin can subsequently be taken up by the muscle fibers by endocytosis giving the appearance of enzyme recycling. Newly synthesized AChE molecules undergo a lengthy series of processing events before final transport to the cell surface and association with the synaptic basal lamina. Following co-translational glycosylation the catalytic subunit polypeptide chain interacts with several molecular chaperones, glycosidases and glycosyltransferases to produce a catalytically active enzyme that can subsequently bind to one of two non-catalytic subunits. These molecular chaperones can be rate limiting steps in the assembly process. Treatment of muscle cells with a synthetic peptide containing the PRAD attachment sequence and a KDEL retention signal results in a large increase in assembled and exportable AChE, providing an additional level of post-translational control. Finally, we have found that Pumilio2, a member of the PUF family of RNA-binding proteins, is highly concentrated at the vertebrate neuromuscular junction where it plays an important role in regulating AChE translation through binding to a highly conserved NANOS response element in the 3'-UTR. Together, these studies define several new levels of AChE regulation in electrically excitable cells.  相似文献   

5.
The vertebrate skeletal neuromuscular junction is the site at which motor neurons communicate with their target muscle fibers. At this synapse, as at synapses throughout the nervous system, efficient and appropriate communication requires the formation and precise alignment of specializations for transmitter release in the axon terminal with those for transmitter detection in the postsynaptic cell. Classical developmental studies demonstrate that synapse formation at the neuromuscular junction is a mutually inductive event; neurons induce postsynaptic differentiation in muscle cells and myofibers induce presynaptic differentiation in motor axon terminals. More recent experiments indicate that Schwann cells, which cap axon terminals, also play an active role in the formation and maintenance of the neuromuscular junction. Here, we review recent advances in the identification of molecules mediating such inductive interactions and the mechanisms by which they produce their effects. Although our discussion concerns events at developing neuromuscular junctions, it seems likely that similar molecules and mechanisms may act at neuron–neuron synapses in the peripheral as well as the central nervous system. BioEssays 20 :819–829, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

6.
《The Journal of cell biology》1987,105(6):2457-2469
Several lines of evidence have led to the hypothesis that agrin, a protein extracted from the electric organ of Torpedo, is similar to the molecules in the synaptic cleft basal lamina at the neuromuscular junction that direct the formation of acetylcholine receptor and acetylcholinesterase aggregates on regenerating myofibers. One such finding is that monoclonal antibodies against agrin stain molecules concentrated in the synaptic cleft of neuromuscular junctions in rays. In the studies described here we made additional monoclonal antibodies against agrin and used them to extend our knowledge of agrin-like molecules at the neuromuscular junction. We found that anti-agrin antibodies intensely stained the synaptic cleft of frog and chicken as well as that of rays, that denervation of frog muscle resulted in a reduction in staining at the neuromuscular junction, and that the synaptic basal lamina in frog could be stained weeks after degeneration of all cellular components of the neuromuscular junction. We also describe anti-agrin staining in nonjunctional regions of muscle. We conclude the following: (a) agrin-like molecules are likely to be common to all vertebrate neuromuscular junctions; (b) the long-term maintenance of such molecules at the junction is nerve dependent; (c) the molecules are, indeed, a component of the synaptic basal lamina; and (d) they, like the molecules that direct the formation of receptor and esterase aggregates on regenerating myofibers, remain associated with the synaptic basal lamina after muscle damage.  相似文献   

7.
8.
Dystrophin coordinates the assembly of a complex of structural and signaling proteins that are required for normal muscle function. A key component of the dystrophin protein complex is alpha-dystrobrevin, a dystrophin-associated protein whose absence results in neuromuscular junction defects and muscular dystrophy. To gain further insights into the role of alpha-dystrobrevin in skeletal muscle, we used the yeast two-hybrid system to identify a novel alpha-dystrobrevin-binding partner called syncoilin. Syncoilin is a new member of the intermediate filament superfamily and is highly expressed in skeletal and cardiac muscle. In normal skeletal muscle, syncoilin is concentrated at the neuromuscular junction, where it colocalizes and coimmunoprecipitates with alpha-dystrobrevin-1. Expression studies in mammalian cells demonstrate that, while alpha-dystrobrevin and syncoilin associate directly, overexpression of syncoilin does not result in the self-assembly of intermediate filaments. Finally, unlike many components of the dystrophin protein complex, we show that syncoilin expression is up-regulated in dystrophin-deficient muscle. These data suggest that alpha-dystrobrevin provides a link between the dystrophin protein complex and the intermediate filament network at the neuromuscular junction, which may be important for the maintenance and maturation of the synapse.  相似文献   

9.
Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.  相似文献   

10.
《The Journal of cell biology》1983,97(5):1396-1411
Hybridoma techniques have been used to generate monoclonal antibodies to an antigen concentrated in the basal lamina at the Xenopus laevis neuromuscular junction. The antibodies selectively precipitate a high molecular weight heparan sulfate proteoglycan from conditioned medium of muscle cultures grown in the presence of [35S]methionine or [35S]sulfate. Electron microscope autoradiography of adult X. laevis muscle fibers exposed to 125I-labeled antibody confirms that the antigen is localized within the basal lamina of skeletal muscle fibers and is concentrated at least fivefold within the specialized basal lamina at the neuromuscular junction. Fluorescence immunocytochemical experiments suggest that a similar proteoglycan is also present in other basement membranes, including those associated with blood vessels, myelinated axons, nerve sheath, and notochord. During development in culture, the surface of embryonic muscle cells displays a conspicuously non-uniform distribution of this basal lamina proteoglycan, consisting of large areas with a low antigen site-density and a variety of discrete plaques and fibrils. Clusters of acetylcholine receptors that form on muscle cells cultured without nerve are invariably associated with adjacent, congruent plaques containing basal lamina proteoglycan. This is also true for clusters of junctional receptors formed during synaptogenesis in vitro. This correlation indicates that the spatial organization of receptor and proteoglycan is coordinately regulated, and suggests that interactions between these two species may contribute to the localization of acetylcholine receptors at the neuromuscular junction.  相似文献   

11.
《The Journal of cell biology》1988,106(4):1263-1272
The synaptic basal lamina, a component of extracellular matrix (ECM) in the synaptic cleft at the neuromuscular junction, directs the formation of new postsynaptic specializations, including the aggregation of acetylcholine receptors (AChRs), during muscle regeneration in adult animals. Although the molecular basis of this phenomenon is unknown, it is mimicked by AChR-aggregating proteins in ECM-enriched fractions from muscle and the synapse-rich electric organ of the ray Torpedo californica. Molecules immunologically similar to these proteins are concentrated in the synaptic basal lamina at neuromuscular junctions of the ray and frog. Here we demonstrate that immunologically, chemically, and functionally similar AChR-aggregating proteins are also associated with the ECM of several other tissues in Torpedo. Monoclonal antibodies against the AChR-aggregating proteins from electric organ intensely stained neuromuscular junctions and the ventral surfaces of electrocytes, structures with a high density of AChRs. However, they also labeled many other structures which have basal laminae, including the extrajunctional perimeters of skeletal muscle fibers, smooth and cardiac muscle cells, Schwann cell sheaths in peripheral nerves, walls of some blood vessels, and epithelial basement membranes in the gut, skin, and heart. Some structures with basal laminae did not stain with the antibodies; e.g., the dorsal surfaces of electrocytes. Bands of similar molecular weight were detected by the antibodies on Western blots of extracts of ECM-enriched fractions from electric organ and several other tissues. Proteins from all tissues examined, enriched from these extracts by affinity chromatography with the monoclonal antibodies, aggregated AChRs on cultured myotubes. Thus, similar AChR- aggregating proteins are associated with the extracellular matrix of many Torpedo tissues. The broad distribution of these proteins suggests they have functions in addition to AChR aggregation.  相似文献   

12.
Basal lamina (BL) ensheathes each skeletal muscle fiber and passes through the synaptic cleft at the neuromuscular junction. Synaptic portions of the BL are known to play important roles in the formation, function, and maintenance of the neuromuscular junction. Here we demonstrate molecular differences between synaptic and extrasynaptic BL. We obtained antisera to immunogens that might be derived from or share determinants with muscle fiber BL, and used immunohistochemical techniques to study the binding of antibodies to rat skeletal muscle. Four antisera contained antibodies that distinguished synaptic from extrasynaptic portions of the muscle fiber's surface. They were anti- anterior lens capsule, anti-acetylcholinesterase, anti-lens capsule collagen, and anti-muscle basement membrane collagen; the last two sera were selective only after antibodies binding to extrasynaptic areas had been removed by adsorption with connective tissue from endplate-free regions of muscle. Synaptic antigens revealed by each of the four sera were present on the external cell surface and persisted after removal of nerve terminal. Schwann cell, and postsynaptic plasma membrane. Thus, the antigens are contained in or connected to BL of the synaptic cleft. Details of staining patterns, differential susceptibility of antigens to proteolysis, and adsorption experiments showed that the antibodies define at least three different determinants that are present in synaptic but not extrasynaptic BL.  相似文献   

13.
In cultured hippocampal neurons, synaptogenesis is largely independent of synaptic transmission, while several accounts in the literature indicate that synaptogenesis at cholinergic neuromuscular junctions in mammals appears to partially depend on synaptic activity. To systematically examine the role of synaptic activity in synaptogenesis at the neuromuscular junction, we investigated neuromuscular synaptogenesis and neurotransmitter release of mice lacking all synaptic vesicle priming proteins of the Munc13 family. Munc13-deficient mice are completely paralyzed at birth and die immediately, but form specialized neuromuscular endplates that display typical synaptic features. However, the distribution, number, size, and shape of these synapses, as well as the number of motor neurons they originate from and the maturation state of muscle cells, are profoundly altered. Surprisingly, Munc13-deficient synapses exhibit significantly increased spontaneous quantal acetylcholine release, although fewer fusion-competent synaptic vesicles are present and nerve stimulation-evoked secretion is hardly elicitable and strongly reduced in magnitude. We conclude that the residual transmitter release in Munc13-deficient mice is not sufficient to sustain normal synaptogenesis at the neuromuscular junction, essentially causing morphological aberrations that are also seen upon total blockade of neuromuscular transmission in other genetic models. Our data confirm the importance of Munc13 proteins in synaptic vesicle priming at the neuromuscular junction but indicate also that priming at this synapse may differ from priming at glutamatergic and gamma-aminobutyric acid-ergic synapses and is partly Munc13 independent. Thus, non-Munc13 priming proteins exist at this synapse or vesicle priming occurs in part spontaneously: i.e., without dedicated priming proteins in the release machinery.  相似文献   

14.
《The Journal of cell biology》1984,99(5):1769-1784
To determine the time course of synaptic differentiation, we made successive observations on identified, nerve-contacted muscle cells developing in culture. The cultures had either been stained with fluorescent alpha-bungarotoxin, or were maintained in the presence of a fluorescent monoclonal antibody. These probes are directed at acetylcholine receptors (AChR) and a basal lamina proteoglycan, substances that show nearly congruent surface organizations at the adult neuromuscular junction. In other experiments individual muscle cells developing in culture were selected at different stages of AChR accumulation and examined in the electron microscope after serial sectioning along the entire path of nerve-muscle contact. The results indicate that the nerve-induced formation of AChR aggregates and adjacent plaques of proteoglycan is closely coupled throughout early stages of synapse formation. Developing junctional accumulations of AChR and proteoglycan appeared and grew progressively, throughout a perineural zone that extended along the muscle surface for several micrometers on either side of the nerve process. Unlike junctional AChR accumulations, which disappeared within a day of denervation, both junctional and extrajunctional proteoglycan deposits were stable in size and morphology. Junctional proteoglycan deposits appeared to correspond to discrete ultrastructural plaques of basal lamina, which were initially separated by broad expanses of lamina-free muscle surface. The extent of this basal lamina, and a corresponding thickening of the postsynaptic membrane, also increased during the accumulation of AChR and proteoglycan along the path of nerve contact. Presynaptic differentiation of synaptic vesicle clusters became detectable at the developing neuromuscular junction only after the formation of postsynaptic plaques containing both AChR and proteoglycan. It is concluded that motor nerves induce a gradual formation and growth of AChR aggregates and stable basal lamina proteoglycan deposits on the muscle surface during development of the neuromuscular junction.  相似文献   

15.
Talin is a post-synaptic component of the rat neuromuscular junction   总被引:12,自引:0,他引:12  
Talin is a protein, recently discovered in chicken gizzard, which occurs at sites of actin-plasma membrane interaction in several cell types. Vinculin also occurs at many of these sites, possibly in association with talin. In this study, three antisera against talin were used to probe the neuromuscular junction of rat skeletal muscle, which is also a site of vinculin accumulation. By immunofluorescence, all three sera stained the junction strongly in frozen sections of rat diaphragm. The extrajunctional periphery was lightly and irregularly stained in some muscle cells; others seemed not to be stained outside the junction. Staining remained at junctions and increased in extrajunctional regions of muscle denervated 6 weeks before sacrifice. The staining in all cases was abolished by competition with purified talin. One serum tested by immunoblotting recognized one protein at Mr 215 000 (identical with the value for chicken gizzard talin) and traces of a second at Mr 190 000 (corresponding to a known proteolytic fragment of talin). We conclude that rat muscle talin is similar in its general protein structure to chicken gizzard talin, and is a post-synaptic component of the neuromuscular junction.  相似文献   

16.
17.
We have used immunocytochemical methods to investigate the cytoskeletal constituents of the vertebrate neuromuscular junction. Specific, affinity-purified antibodies to three cytoskeletal proteins, vinculin, alpha-actinin, and filamin, bound to neuromuscular junctions in sections of normal rat, mouse, chick, and Xenopus muscles. All three antibodies bound to the synaptic regions of denervated rat muscle fibers, indicating that the proteins recognized by these antibodies are associated with postsynaptic structures. The three proteins are present at the neuromuscular junction in muscle fibers of embryonic and neonatal animals, and therefore, may play an important role in its differentiation.  相似文献   

18.
19.
Sporadic-inclusion body myositis (s-IBM) is the most common skeletal muscle disorder to afflict the elderly, and is clinically characterized by skeletal muscle degeneration. Its progressive course leads to muscle weakness and wasting, resulting in severe disability. The exact pathogenesis of this disease is unknown and no effective treatment has yet been found. An intriguing aspect of s-IBM is that it shares several molecular abnormalities with Alzheimer's disease, including the accumulation of amyloid-β-peptide (Aβ). Both disorders affect homeostasis of the cytotoxic fragment Aβ(1-42) during aging, but they are clinically distinct diseases. The use of animals that mimic some characteristics of a disease has become important in the search to elucidate the molecular mechanisms underlying the pathogenesis. With the aim of analyzing Aβ-induced pathology and evaluating the consequences of modulating Aβ aggregation, we used Caenorhabditis elegans that express the Aβ human peptide in muscle cells as a model of s-IBM. Previous studies indicate that copper treatment increases the number and size of amyloid deposits in muscle cells, and is able to ameliorate the motility impairments in Aβ transgenic C. elegans. Our recent studies show that neuromuscular synaptic transmission is defective in animals that express the Aβ-peptide and suggest a specific defect at the nicotine acetylcholine receptors level. Biochemical analyses show that copper treatment increases the number of amyloid deposits but decreases Aβ-oligomers. Copper treatment improves motility, synaptic structure and function. Our results suggest that Aβ-oligomers are the toxic Aβ species that trigger neuromuscular junction dysfunction.  相似文献   

20.
Carbohydrates have been shown to mediate or modulate a number of important events in the development of the nervous system; however, there is little evidence that they participate directly in the development of synapses. One carbohydrate structure that is likely to be important in synaptic development of the neuromuscular junction is the CT carbohydrate antigen [GalNAcbeta1,4[NeuAcalpha2,3]Galbeta1(-3GalNAc or -4GlcNAc)]. The synaptic localization of the CT antigen is due to the presence of the terminal beta1,4 GalNAc linkage, and such linkages are localized to the neuromuscular junction in many species. Here we show that an enzyme that can create the synaptic CT structure, the CT GalNAc transferase, is also confined to the neuromuscular junction in mice. Using transgenic mice, we show that overexpression of the CT GalNAc transferase in extrasynaptic regions in skeletal myofibers caused as much as a 60% reduction in the diameter of adult myofibers and an order of magnitude increase in satellite cells. Neuromuscular junctions of transgenic mice had severely reduced numbers of secondary folds, Schwann cell processes were present in the synaptic cleft, and secondary folds were often misaligned with active zones. In addition, multiple presynaptic specializations occurred on individual myofibers. In addition, some normally synaptic proteins, including laminin alpha4, laminin alpha5, utrophin, and NCAM, were expressed along extrasynaptic regions of myofibers. One of the muscle proteins that displayed increased glycosylation with the CT antigen in the transgenic mice was alpha-dystroglycan. These experiments provide the first in vivo evidence that a synaptic carbohydrate antigen has important roles in the development of the neuromuscular synapse and suggest that the CT antigen is involved in controlling the expression of synaptic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号