首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The putative 15 S precursor of globin mRNA contains a poly (A) sequence   总被引:2,自引:0,他引:2  
[3H] Uridine or [3H] adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA. A poly (A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H] uridine was fractionated by chromatography on poly (U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

2.
3.
4.
5.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

6.
Primary and secondary structure in a precursor of 5 S rRNA   总被引:1,自引:0,他引:1  
  相似文献   

7.
L Gedamu  K Iatrou  G H Dixon 《Cell》1977,10(3):443-451
Poly(A)+ protamine mRNA was isolated from trout testis cells in a very pure form, and artificial poly(A)- protamine mRNA molecules were derived from it by enzymatic deadenylation with RNAase H from calf thymus after hybridization with oligo(dT). The deadenylated protamine mRNA was found to be active in a wheat germ cell-free system and yielded a labeled product which co-migrated with authentic protamine. These deadenylated mRNA molecules were subsequently used as markers on denaturing polyacrylamide gels to identify and allow the purification of the poly(A)- protamine components known to exist in vivo in the total cellular poly(A)- RNA. RNA species of molecular weights similar to the enzymatically deadenylated subcomponents of protamine mRNA were observed in the natural poly(A)-RNA population of the testis cells. These naturally occurring poly(A)- protamine mRNAs were isolated by preparative gel electrophoresis and further characterized by 3H-poly(U) hybridization assay, by hybridization to complementary DNA made against highly purified poly(A)+ protamine mRNA, and by their ability to direct protamine synthesis in a cell-free system.  相似文献   

8.
The effect of ageing on the properties of polysomal poly(A)-containing messenger RNA [poly(A)+ mRNA] of Physarum polycephalum has been investigated. Using poly(U)--Sepharose affinity chromatography it was shown that shortening of the poly(A) tract occurred as the age of the mRNA population increased. Analysis of the poly(A) segments by use of polyacrylamide gel electrophoresis, after digestion of polysomal poly(A)+ mRNA molecules with RNAase A and RNAase T1, revealed that their lengths ranged from 140 to 220 nucleotide residues. A reduction in the efficiency of utilization of mRNA for translation as the age of the mRNA population increased was demonstrated by measuring the proportion of poly(A)+ mRNA present in the polysomal fraction as compared with post-polysomal material.  相似文献   

9.
Processing of bacteriophage T4 tRNAs. The role of RNAase III   总被引:2,自引:0,他引:2  
In order to assess the contribution of the processing enzyme RNAase III to the maturation of bacteriophage T4 transfer RNA, RNAase III+ and RNAase III? strains were infected with T4 and the tRNAs produced were analyzed. Infection of the RNAase III+ strains of Escherichia coli with T4Δ27, a deletion strain missing seven of the ten genes in the T4 tRNA cluster, results in the appearance of a transient 10.1 S RNA molecule as well as the three stable RNAs encoded by T4Δ27, species 1, rRNALeu and tRNAGln. Infection of an RNAase III? strain results in the appearance of a larger, transient RNA molecule, 10.5 S, and a severe reduction in the accumulation of tRNAGln. The 10.5 S RNA is similar to 10.1 S RNA but contains extra nucleotides (about 50) at the 5′ end. (10.1 S contains all the three final molecules plus about 70 extra nucleotides at the 3′ end.) Both 10.5 S and 10.1 S RNAs can be processed in vitro into the three final molecules. When 10.1 S is the substrate, the three final molecules are obtained whether extracts of RNAase III+ or RNAase III? cells are used. However, when 10.5 S is the substrate RNAase III+ extracts bring out normal maturation, while using RNAase III? extracts the level of tRNAGln is severely reduced. When 10.5 S is used with RNAase III+ extracts maturation proceeds via 10.1 S RNA, while when RNAase III? extracts were used 10.1 S is not detected. The 10.5 S RNA can be converted to 10.1 S RNA by RNAase III in a reaction which produces only two fragments. The sequence at the 5′ end of the 10.5 S suggests a secondary structure in which the RNAase III cleavage site is in a stem. These experiments show that the endonucleolytic RNA processing enzyme RNAase III is required for processing at the 5′ end of the T4 tRNA cluster where it introduces a cleavage six nucleotides proximal to the first tRNA, tRNAGln, in the cluster.  相似文献   

10.
Procedures are described that permit the detection and isolation of a specific messenger RNA as well as its precursor from total cell extracts. DNA complementary to the mRNA was elongated by the addition of dCMP residues and annealed with labeled cell RNA. The elongated DNA with RNA hybridized to it was isolated by chromatography on a poly(I)-Sephadex column. The method was used to isolate 32P-labeled globin mRNA from labeled Friend cells, a mouse erythroleukaemic cell line, induced with dimethylsulfoxide to synthesize hemoglobin. 32P-labeled globin mRNA isolated by this procedure was estimated to be 80% pure by hybridization analysis and sedimented as a single peak at 10 S. Partial sequences were determined for 16 oligonucleotides derived from the purified 32P-labeled globin mRNA by RNAase T1 digestion. The partial sequences for nine oligonucleotides corresponded to those predicted from the amino acid sequences of α and β globin; the other oligonucleotides were presumably derived from non-translated regions.In order to detect a possible precursor to globin mRNA, RNA from induced Friend cells pulse-labeled with [32P]phosphate for 20 minutes was centrifuged through a sucrose gradient and the resulting fractions were analyzed for globinspecific sequences. Two peaks of globin-specific RNA were detected, a larger one at 10 S, the position of mature globin mRNA, and a smaller one at 15 S.  相似文献   

11.
RNA polymerase of Escherichia coli was allowed to bind to labeled T4 or T7 bacteriophage DNA. The unbound and “weakly” bound polymerase molecules were removed by adding an excess of poly(I) which has a high affinity for the enzyme (Bautz et al., 1972). After the unbound DNA regions were digested with pancreatic DNAase and snake venom phosphodiesterase, the “protected” DNA-RNA polymerase complexes were isolated by Sephadex G200 column chromatography. The protected DNA sites were then isolated by phenol extraction and hydroxylapatite chromatography. Studies of the DNA recognition regions led to the following conclusions. (1) No binding is observed in the absence of the sigma subunit or at low temperatures. (2) The amount of protection ranges from 0·18% to 0·24% of T4 DNA and from 0·25% to 0·34% of T7 DNA. In the absence of poly(I), higher protections are observed and the protected regions display heterogeneity in size and secondary structure. (3) The protected regions are double-stranded, as shown by hydroxylapatite chromatography, base composition analysis, and thermal chromatography. (4) The length of the protected regions comprise about 50 to 55 nucleotide pairs, as suggested by end-group analysis, sucrose density-gradient centrifugation, and polyacrylamide gel electrophoresis. (5) The results suggest the interaction of dimeric polymerase molecules at these sites. On the basis of DNA sizes, there are 7 to 9 such sites on T4 DNA and 2 to 3 on T7 DNA. (6) The protected regions are high in (A + T): 68% for T4 and 62% for T7 DNA. (7) Thermal chromatograms reflect these base compositions and suggest the homogeneity of these regions with respect to size and base composition.  相似文献   

12.
13.
1. Double-stranded f2 sus11 or Qbeta RNAs, resistant to bovine pancreatic RNAase A in 0.15 M NaCl/0.015 M sodium citrate (SSC), are quickly and completely degraded at 10-fold lower ionic strength (0.1 X SSC) under otherwise similar conditions. At this ionic strength the secondary structure of double-stranded RNA is maintained, as judged by the following: (a) the unchanged resistance of double-stranded RNA and DNA, under similar low ionic strength conditions, to nuclease S1 from Aspergillus oryzae, in contrast with the sensitivity of the corresponding denatured nucleic acids to this enzyme, specific for single-stranded RNA and DNA; (b) the co-operative pattern of the thermal-transition profile of double-stranded RNA (with a Tm of 89 degrees C) in 0.1 X SSC. 2. Whereas in SSC bovine seminal RNAase (RNAase BS-1) and whale pancreatic RNAase show an activity on double-stranded RNA significantly higher than that of RNAase A, in 0.1 X SSC the activity of the latter enzyme on this substrate becomes distinctly higher than that of RNAase BS-1, and similar to that of whale RNAase. 3. From these results it is deduced that the secondary structure is probably not the only nor the most important variable in determining the susceptibility double-stranded RNA to ribonuclease. Other factors, such as the effect of ionic strength on the enzyme and/or the binding of enzyme to nucleic acids, may play an important role in the process of double-stranded RNA degradation by ribonucleases specific for single-stranded RNA.  相似文献   

14.
15.
R F Boone  R P Parr    B Moss 《Journal of virology》1979,30(1):365-374
  相似文献   

16.
Pulse labelled bacteriophage T4 RNA isolated from polysomes from either early or late infected cells were found to contain complementary RNA. The fraction of complementary late RNA was higher in the heaviest late polysomes. The RNA not associated with polysomes appeared to contain insignificant amounts of complementary RNA. The significance of these findings are discussed.  相似文献   

17.
T7 early messenger RNAs are the direct products of ribonuclease III cleavage   总被引:20,自引:0,他引:20  
T7 early RNAs were synthesized in vitro by transcribing T7 DNA with Escherichia coli RNA polymerase and treating the resulting precursor molecule with ribonuelease III. Oligonucleotide fragments from the 5′ and 3′ termini of several of the cleaved species were then selectively isolated. Structural analysis revealed sequences identical to the corresponding in vivo RNAs. Thus, the T7 early RNAs found in phage-infected cells appear to be the direct products of RNAase III cleavage of a large precursor molecule. We conclude further that RNAase III action on this particular natural substrate is a sequence-specific event.  相似文献   

18.
19.
20.
tRNA precursor molecules that contain the CCA sequence found at the 3' termini of all mature tRNAs are cleaved in vitro more readily by M1 RNA, the catalytic subunit of E. coli RNAase P, than precursors that lack this sequence. The sensitivity to the CCA sequence is not apparent when precursors are cleaved by the reconstituted RNAase P holoenzyme that contains both M1 RNA and the protein subunit. These results have been obtained with monomeric precursor molecules encoded by the E. coli and human chromosomes and with three dimeric precursor molecules encoded by the bacteriophage T4 genome. The data are in agreement with previous results concerning T4 tRNA biosynthesis in vivo and show that the CCA sequence is important for the processing of precursors to tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号