首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
? Wide hybridization of waterlogging-tolerant Hordeum marinum with wheat (Triticum aestivum) to produce an amphiploid might be one approach to improve waterlogging tolerance in wheat. ? Growth, root aerenchyma and porosity, and radial oxygen loss (ROL) along roots were measured in four H. marinum-wheat amphiploids and their parents (four accessions of H. marinum and Chinese Spring wheat) in aerated or stagnant nutrient solution. A soil experiment was also conducted. ? Hordeum marinum maintained shoot dry mass in stagnant nutrient solution, whereas the growth of wheat was markedly reduced (40% of aerated control). Two of the four amphiploids were more tolerant than wheat (shoot dry masses of 59-72% of aerated controls). The porosity of adventitious roots when in stagnant solution was higher in H. marinum (19-25%) and the four amphiploids (20-24%) than in wheat (16%). In stagnant solution, adventitious roots of H. marinum formed a strong ROL barrier in basal zones, whereas, in wheat, the barrier was weak. Two amphiploids formed a strong ROL barrier and two formed a moderate barrier when in stagnant solution. ? This study demonstrates the transfer of higher root porosity and a barrier to ROL from H. marinum to wheat through wide hybridization and the production of H. marinum-wheat amphiploids.  相似文献   

2.
3.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

4.
5.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   

6.

Background and Aims

When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat.

Methods

Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl) concentrations were determined.

Key Results

Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat.

Conclusions

Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl ‘exclusion’ even in an O2-deficient, saline rooting medium.Key words: Aerenchyma, combined salinity and waterlogging, leaf Cl, leaf K+, leaf Na+, radial O2 loss, salt tolerance, salinity–waterlogging interaction, sea barleygrass, waterlogging tolerance, wheat, wild Triticeae  相似文献   

7.
BACKGROUND AND AIMS: Akagare and Akiochi are diseases of rice associated with sulfide toxicity. This study investigates the possibility that rice reacts to sulfide by producing impermeable barriers in roots. METHODS: Root systems of rice, Oryza sativa cv. Norin 36, were subjected to short-term exposure to 0.174 mm sulfide (5.6 ppm) in stagnant solution. Root growth was monitored; root permeability was investigated in terms of polarographic determinations of oxygen efflux from fine laterals and the apices of adventitious roots, water uptake, anatomy and permeability to Fe2+ using potassium ferricyanide. KEY RESULTS: Both types of root responded rapidly to the sulfide with immediate cessation of growth, decreased radial oxygen loss (ROL) to the rhizospheres and reduced water uptake. Profiles of ROL measured from apex to basal regions of adventitious roots indicated that more intense barriers to ROL than normal were formed around the apices. Absorption of Fe2+ appeared to be impeded in sulfide-treated roots. In adventitious roots, deposition of lipid material (suberisation) and thickenings of walls within the superficial cell layers were obvious within a week after lifting the treatment and could prevent the emergence of laterals and commonly result in their upward longitudinal growth within the cortex. Death of laterals sometimes occurred prior to emergence; emergent laterals eventually died. In adventitious roots, blockages formed within the vascular and aeration systems in response to the sulfide. CONCLUSIONS: In both adventitious and lateral roots, sulfide-induced cell wall suberization and thickening of the superficial layers were correlated with reduced permeability to O2, water and Fe2+. This study sheds light on some of the symptoms of diseases such as Akiochi. The results correlate with the authors' previous findings on the effects on roots of sulfide and lower organic acids in Phragmites and of acetic acid in rice.  相似文献   

8.
9.
A root pressure probe has been used to measure the root pressure (Pr) exerted by excised main roots of young maize plants (Zea Mays L.). Defined gradients of hydrostatic and osmotic pressure could be set up between root xylem and medium to induce radial water flows across the root cylinder in both directions. The hydraulic conductivity of the root (Lpr) was evaluated from root pressure relaxations. When permeating solutes were added to the medium, biphasic root pressure relaxations were observed with water and solute phases and root pressure minima (maxima) which allowed the estimation of permeability (PSr) and reflection coefficients (σsr) of roots. Reflection coefficients were: ethanol, 0.27; mannitol, 0.74; sucrose, 0.54; PEG 1000, 0.82; NaCl, 0.64; KNO3, 0.67, and permeability coefficients (in 10−8 meters per second): ethanol, 4.7; sucrose, 1.6; and NaCl, 5.7. Lpr was very different for osmotic and hydrostatic gradients. For hydrostatic gradients Lpr was 1·10−7 meters per second per megapascal, whereas in osmotic experiments the hydraulic conductivity was found to be an order of magnitude lower. For hydrostatic gradients, the exosmotic Lpr was about 15% larger than the endosmotic, whereas in osmotic experiments the polarity in the water movement was reversed. These results either suggest effects of unstirred layers at the osmotic barrier in the root, an asymmetrical barrier, and/or mechanical effects. Measurements of the hydraulic conductivity of individual root cortex cells revealed an Lp similar to Lpr (hydrostatic). It is concluded that, in the presence of external hydrostatic gradients, water moves primarily in the apoplast, whereas in the presence of osmotic gradients this component is much smaller in relation to the cell-to-cell component (symplasmic plus transcellular transport).  相似文献   

10.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

11.
Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.  相似文献   

12.
Birds have much higher plasma glucose and fatty acid levels compared to mammals. In addition, they are resistant to insulin-induced decreases in blood glucose. Recent studies have demonstrated that decreasing fatty acid utilization alleviates insulin resistance in mammals, thereby decreasing plasma glucose levels. This has yet to be examined in birds. In the present study, the levels of glucose and beta-hydroxybutyrate (BOHB), a major ketone body and indicator of fatty acid utilization, were measured after the administration of chicken insulin, acipimox (an anti-lipolytic agent), or insulin and acipimox in mourning doves (Zenaidura macroura). Insulin significantly decreased whole blood glucose levels (19%), but had no effect on BOHB concentrations. In contrast, acipimox decreased blood BOHB levels by 41%, but had no effect on whole blood glucose. In addition to changes in blood composition, levels of glucose uptake by various tissues were measured after the individual and combined administration of insulin and acipimox. Under basal conditions, the uptake of glucose appeared to be greatest in the kidney followed by the brain and skeletal muscle with negligible uptake by heart, liver and adipose tissues. Acipimox significantly decreased glucose uptake by brain (58% in cortex and 55% in cerebellum). No significant effect of acipimox was observed in other tissues. In summary, the acute inhibition of lipolysis had no effect on glucose uptake in the presence or absence of insulin. This suggests that free fatty acids alone may not be contributing to insulin resistance in birds.  相似文献   

13.
This study describes the O2 uptake characteristics of intact roots of Brachypodium pinnatum. In the presence of 25 mM salicylhydroxamic acid (SHAM), concentrations of KCN below 3.5 νM had no effect on the rate of root respiration, whereas in the absence of 25 mM SHAM a significant inhibition of approx. 18% was observed. This indicates that an O2-consuming reaction, not associated with the cytochrome pathway, the alternative pathway or the “residual component”, operates in the absence of any inhibitors in roots of B. pinnatum. We demonstrate here that this fourth O2-consuming reaction is mediated by a peroxidase. A peroxidase which catalyzed O2 reduction in the presence of NADH was readily washed from the roots of B. pinnatum. This peroxidase was stimulated by 5 mM SHAM, whereas ascorbic acid, catalase, catechol, gentisic acid, low concentrations potassium cyanide (3.5 μM), sodium azide, sodium sulfide, superoxide dismutase and high concentrations SHAM (25 mM) inhibited this reaction. Except for high concentrations of SHAM and concentrations of KCN higher than approx. 3.5 μM, these effectors could not be used to inhibit the peroxidase-mediated O2 uptake in intact roots of B. pinnatum. Concentrations of SHAM below 10 mM stimulated O2 uptake up to 15% of the control rate, depending on concentration, whereas 25 mM SHAM inhibited O2 uptake by 35%. The stimulation at low concentrations resulted from a SHAM-stimulated peroxidase activity, whereas 25 mM SHAM completely inhibited both the peroxidase-mediated O2 uptake and the activity of the alternative pathway. A method is presented for determining the relative contributions of each of the four O2-consuming reactions, i.e. the cytochrome pathway, the alternative pathway, the “residual component” and the peroxidase-mediated O2 uptake. The peroxidase-mediated O2 uptake contributed 21% to the total rate of oxygen uptake in roots of B. pinnatum, the cytochrome pathway contributed 41%, the alternative pathway 14% and the “residual component” 24%.  相似文献   

14.
We previously reported that pulmonary arterial occlusion for 48 h followed by 4 h of reperfusion in awake dogs results in marked edema and inflammatory infiltrates in both reperfused and contralateral lungs (Am. Rev. Respir. Dis. 134: 752-756, 1986; J. Appl. Physiol. 63: 942-950, 1987). In this experiment we study the effects of alveolar hypoxia on this injury. Anesthetized dogs underwent thoracotomy and occlusion of the left pulmonary artery. Twenty-four hours later the dogs were reanesthetized, and a double-lumen endotracheal tube was placed. The right lung was continuously ventilated with an inspiratory O2 fraction (FIO2) of 0.35. In seven study animals the left lung was ventilated with an FIO2 of 0 for 3 h after the left pulmonary artery occluder was removed. In six control animals the left lung was ventilated with an FIO2 of 0.35 during the same reperfusion period. Postmortem bloodless wet-to-dry weight ratios were 5.87 +/- 0.20 for the left lower lobe and 5.32 +/- 0.12 for the right lower lobe in the dogs with hypoxic ventilation (P less than 0.05 for right vs. left lobes). These values were not significantly different from the control dog lung values of 5.94 +/- 0.22 for the left lower lobe and 5.11 +/- 0.07 for the right lower lobe (P less than 0.05 for right vs. left lobes). All values were significantly higher than our laboratory normal of 4.71 +/- 0.06. We conclude that reperfusion injury is unaffected by alveolar hypoxia during the reperfusion phase.  相似文献   

15.
The hydraulic conductivity of roots (Lpr) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lpr was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lpr evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lpr were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lpr. Received: 17 March 1999 / Accepted: 22 June 1999  相似文献   

16.
During the first 4 d after the removal of SO 4 2- from cultures of young barley plants, the net uptake of 15N-nitrate and the transport of labelled N to the shoot both decline. This occurred during a period in which there was no measurable change in plant growth rate and where the incorporation of [3H]leucine into membrane and soluble proteins was unaffected. Reduced N translocation was associated with six- to eightfold increases in the level of asparagine and two- to fourfold increases in glutamine in root tissue; during the first 4 d of SO 4 2- deprivation there were no corresponding increases in amides in leaf tissue. The provision of 1 mol · m–3 methionine halted, and to some extent reversed the decline in NO 3 - uptake and N translocation which occurred during continued SO 4 2- deprivation. This treatment had relatively little effect in lowering amide levels in roots. Experiments with excised root systems indicated that SO 4 2- deprivation progressively lowered the hydraulic conductivity, Lp, of roots; after 4 d the Lp of SO 4 2- -deprived excised roots was only 20% of that of +S controls. In the expanding leaves of intact plants, SO 4 2- deprivation for 5 d was found to lower stomatal conductance, transpiration and photosynthesis, in the order given, to 33%, 37% and 18% of control values. The accumulation of amides in roots is probably explained by a failure to export either the products of root nitrate assimilation or phloem-delivered amino-N. This may be correlated with the lowered hydraulic conductivity. Enhanced glutamine and-or asparagine levels probably repressed net uptake of NO 3 - and 13NO 3 - influx reported earlier (Clarkson et al. 1989, J. Exp. Bot. 40, 953–963). Attention is drawn to the similar hydraulic signals occurring in the early stages of several different types of mineral-nutrient stresses.Abbreviations Asn asparagine - Gln glutamine - Lp hydraulic conductivity J.L.K. is extremely grateful to the British Council for supporting his working visit to Long Ashton. We thank John Radin for helpful discussion and encouragement.  相似文献   

17.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

18.
The present report describes experiments in which the effects of growth in aerated and stagnant nutrient solutions on adventitious root porosities and patterns of radial O2 loss (ROL) from the roots of four genotypes of rice (Oryza sativa L.) were evaluated. The genotypes studied are usually cultivated in farming systems which differ markedly in their degree of soil waterlogging and flooding. Rice genotypes were found to differ in the constitutive porosity (% gas space) of their adventitious roots when grown in aerated solutions (lowest was 16%, highest was 30%), and the roots grown in stagnant conditions had porosities between 28% and 38%. ROL from the adventitious roots raised in aerated solution increased with distance behind the tip in three of the four genotypes; whereas for roots raised in stagnant solution, ROL decreased with distance behind the tip which is indicative of a high resistance to diffusion between the aerenchyma and external medium. For example, at 35 mm behind the root tip the ROL from roots of the 'deepwater' cultivar grown in stagnant conditions was 0.7% of the rate of its aerated roots, for the 'lowland' cultivar it was 5.6%, and for one of the 'upland' cultivars it was 43.6%. Thus, the barrier to ROL from the adventitious roots in three of the four genotypes was induced by growth in stagnant nutrient solution. A low rate of ROL from the basal zones of roots in an O2-free environment is of adaptative value since longitudinal diffusion of O2 to the root apex would be enhanced which, in turn, enables greater penetration of roots into anaerobic soils.  相似文献   

19.
20.
Banks WA  Kumar VB  Franko MW  Bess JW  Arthur LO 《Life sciences》2005,77(19):2361-2368
HIV-1 within the CNS produces a neuroAIDS syndrome and may act as a reservoir for reinfection of the peripheral tissues. Study of how HIV-1 crosses the blood-brain barrier (BBB) has been hampered by the lack of nonprimate animal models. However, BBB transport of HIV-1 does not involve any of the known steps conferring species specificity, including binding to CD4 receptors. In vivo and in vitro studies show that HIV-1 and its glycoprotein coat, gp120, are taken up and transported across the BBB of the mouse. Here, we compared the ability of gp120 and HIV-1 to be taken up by isolated brain microvessels (IBM) freshly isolated from mice, from post-mortem human brain, and from mice that had been treated in a manner analogous to the human material (mouse post-mortem). Freshly isolated mouse IBM took up more gp120 and HIV-1 than the human or mouse post-mortem cells. We found no difference between the ability of mouse post-mortem and human IBM to take up either gp120 or HIV-1. Wheatgerm agglutinin has been previously shown to stimulate gp120 and HIV-1 uptake by the BBB; here, it stimulated the uptake of gp120 and of HIV-1 by both mouse post-mortem and human IBM, although stimulated uptake was greatest for fresh mouse IBM. These results show that the mouse can be used to study the initial phases of HIV-1 uptake by the BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号