首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the individual magnetic field exposures at 16 2/3 and 50 Hz of 1952 people, selected from the Bavarian population. Personal flux density meters ("Field Watcher FW2A") were worn by the participants for 24 h. Every second, the flux density was recorded for both frequencies and for the three spatial axes (dynamic range per axis: several nT up to 100 microT at 50 Hz, 150 microT at 16 2/3 Hz). For 50 Hz fields, the mean of the 1,952 individual means was 0.101 microT and that of the individual medians was 0.047 microT. High level exposures occurred mainly during working hours. Only 2.4% of the subjects showed individual medians higher than 0.2 microT. About 53% of all volunteers were working on the day of recording. Levels for craftsmen (n = 148; mean individual mean: 0.166 microT) were generally higher than those for office workers (n = 624; mean individual mean: 0.107 microT). Flux densities exceeding 100 microT at 50 Hz were measured in 31 persons. The total time with such extreme exposures amounts to nearly 21 min, less than 0.001% of the total time for all measurements (5.3 years). To our knowledge, this is the first exposure study where 16 2/3 Hz magnetic fields (caused by electrified railways) have additionally been monitored over 24 h. For persons living next to railway lines, the mean individual mean (0.156 microT) and mean individual median (0.102 microT) were calculated. Over all, the mean exposures are only 0.1% of the magnetic flux density limit for 50 Hz (100 microT) and about 0.05% of the limit (300 microT) for 16 2/3 Hz recommended by the International Commission on Non-Ionizing Radiation Protection.  相似文献   

2.
Some epidemiological studies suggest that exposure to 50 or 60 Hz magnetic fields might increase the risk of leukemia, especially in children with a comparable high residential exposure. To investigate this possibility experimentally, the influence of 50 Hz magnetic-field exposure on lymphoma induction was determined in a mouse strain that is genetically predisposed to this disease. The AKR/J mouse genome carries the AK virus, which leads within 1 year to spontaneous development of thymic lymphoblastic lymphoma. Beginning at an age of 4-5 weeks, groups of 160 female mice were sham-exposed or exposed to 50 Hz magnetic fields at 1 or 100 microT for 24 h per day, 7 days per week, for 38 weeks. Animals were checked visually daily and were weighed and palpated weekly. There was no effect of magnetic-field exposure on body weight gain or survival rate, and lymphoma incidence did not differ between exposed and sham-exposed animals. Therefore, these data do not support the hypothesis that chronic exposure to 50 Hz magnetic fields is a significant risk factor for developing hematopoietic malignancy.  相似文献   

3.
Vicia faba seedlings, subjected to a 10 microT 50 Hz square wave magnetic field for 40 min together with a radioactive pulse, showed a marked increase in amino acid uptake into intact roots. A more modest increase was observed with a 100 microT 50 Hz square wave. An increase in media conductivity at low field intensities from 10 microT 50 Hz square wave, 100 microT 50 Hz sine wave, and 100 microT 60 Hz square wave fields, indicated an alteration in the movement of ions across the plasma membrane, most likely due to an increase in net outflow of ions from the root cells. Similarly, marked elevation in media pH, indicating increased alkalinity, was observed at 10 and 100 microT for both square and sine waves at both 50 and 60 Hz. Our data would indicate that low magnetic field intensities of 10 and 100 microT at 50 or 60 Hz can alter membrane transport processes in root tips.  相似文献   

4.
The effect of exposure to 100 or 50 microT, 50 Hz, vertical magnetic field on the excretion of 6-sulphatoxymelatonin (6SM) in the nocturnal urine of rats was studied. Twelve male Wistar rats were kept under 12:12 hr light:dark conditions. The nocturnal urine of animals was collected in metabolic cages over 4 consecutive weeks. The concentration of 6SM in the rat urine was measured by 125I radioimmunoassay and normalized to creatinine concentration. After the first week of urine collection, 6 rats were exposed to 100 microT or 50 microT flux density magnetic fields (MF) for 8 hr daily for 1 week. It was found that the excretion of the primary metabolite of melatonin in the urine, 6SM, did not show statistically significant changes during and after magnetic field exposure.  相似文献   

5.
The effect of an extremely low frequency (ELF) magnetic field on the fertility of adult male and female Swiss mice was investigated. Adult male and female mice were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 90 days before they were mated with unexposed counterparts. There were no exposure related effects on the fertility of male or female mice. The number of implantation sites, viable fetuses, and the total number of resorptions were not significantly affected in females impregnated by males exposed to the 50 Hz magnetic field as compared with the control group. The number of implantation sites, viable fetuses and the total number of resorptions in exposed females were also not statistically different from the control group. There were no significant effects on the weights of the testes, seminal vesicles, preputial gland or body weights of males exposed to 50 Hz magnetic field. Furthermore, body and uterine weights were not affected in females exposed to 50 Hz field; however, ovarian weight was significantly increased in females exposed to the same field. These results suggest that exposure of male and female mice to low frequency magnetic field had no adverse effects on fertility and reproduction in mice.  相似文献   

6.
The possibility that weak, ac and dc magnetic fields in combination may affect binding equilibria of calcium-ions (Ca2+) was investigated with two metallochromic dyes as calcium-binding molecules: murexide and arsenazo III. Calcium-dye equilibria were followed by measuring solution absorbances with a fiber-optic spectrophotometer. A Ca(2+)-arsenazo solution was also used indirectly to monitor the binding of Ca2+ to calmodulin. Parallel, ac and dc magnetic fields were applied to each preparation. The ac magnetic field was held constant during each of a series of experiments at a frequency in the range between 50 and 120 Hz (sine wave) or at 50 pps (square wave) and at an rms flux density in the range between 65 and 156 microT. The dc magnetic field was then varied from 0 to 299 microT at 1.3 microT increments. The magnetic fields did not measurably affect equilibria in the binding of metallochromic dyes or calmodulin to Ca2+.  相似文献   

7.
Orientation and nociception (pain sensitivity) are affected by exposure to geomagnetic or low frequency (<1,000 Hz) magnetic fields of approximately the earth's field strength, i.e., 50 microT. However, these effects are often dependent on the simultaneous presence of visible light. Recently, it was shown that nociception was affected in mice acutely exposed to an electromagnetic-shielded environment in the dark (<0.05 W/m(2)) during the mid-light phase of the diurnal cycle. Here, we report for the first time that if mice are exposed to magnetic shielding in the presence of visible light (0.6 W/m(2), 400-750 nm) that most of the effects of shielding are eliminated. This simple experimental protocol may be useful in investigating the role that light plays in the detection of ambient electromagnetic fields.  相似文献   

8.
磁场对小鼠两种迷宫学习记忆的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
据发现,磁场对生物体有一定作用,但是磁场对于人类或实验动物的学习记忆是否有影响,目前的报道结果很不一致。本实验采用实验小白鼠,给予不同强度(65高斯/50Hz,35高斯/25Hz)的低频磁场照射(每天1小时,持续25天)。磁场照射后,采用旷场行为测试、Y-迷宫和Morris水迷宫,检测小鼠的活动性、空间辨别、空间学习记忆和非空间学习记忆能力。结果表明:65高斯/50Hz磁场显著增高小鼠的活动性,并损伤小鼠Y-迷宫的空间辨别能力,但对Morris水迷宫的空间、非空间学习记忆无明显影响。35高斯/25Hz磁场处理动物行为在三个指标上均接近对照组。提示:长期的磁场照射可能会给动物,甚至人类造成一些影响。  相似文献   

9.
Cytogenetic investigations were performed in human peripheral blood lymphocytes following exposure to 50 Hz magnetic fields alone or in combination with the chemical mutagen mitomycin C or with X-rays. It was found that magnetic fields up to 2500 microT did not significantly influence the chromosome aberration and sister chromatid exchange frequency. Also, the combined treatments failed to indicate the presence of any synergistic, potentiating, or antagonistic effect between the ELF magnetic fields and the mutagens. However, there were two exceptions: Cells exposed to 504 microT magnetic fields before and during cultivation displayed a statistically significant decrease in sister chromatid exchange frequency. Also, when cells were cultivated in the presence of 88.4 microT magnetic fields following X-ray exposures there was a significant increase in chromosome aberration frequency compared to X-ray exposure alone.  相似文献   

10.
The aim of the work was verification of the hypothesis that weak power frequency (50 Hz) magnetic fields (MF) affected the number of free oxygen radicals in living biological cells and that these changes could be qualitatively explained by the radical pair mechanism. The experiments were performed on rat lymphocytes. One-hour exposure to 50 Hz MF at 20, 40, or 200 microT flux densities was performed inside a pair of Helmholtz coils with axis along or crosswise to the Earth's static MF. Iron ions (FeCl2) were used as a stimulator of the oxidation processes. Oxygen radicals were measured by fluorimetry using a DCF-DA fluorescent probe. Only in the lymphocytes exposed at 40 microT MF directed along the Earth's static MF there was a decrease of fluorescence in relation to non-exposed samples. Our observation seems to confirm the hypothesis that low level power frequency MF affects oxidative processes which occur in living biological cells and that this effect can be explained by the radical pair mechanism.  相似文献   

11.
Several animal studies have been carried out at the Institut Armand Frappier (IAF) to determine whether chronic exposure to 60 Hz linearly polarized sinusoidal magnetic fields might increase the risk of cancer development of female Fisher rats. The magnetic field exposure facility was developed to meet the requirements of the study protocol for chronic exposure of large number of animals to field intensities of sham < 0.2 microT, 2 microT, 20 microT, 200 microT, and 2000 microT. At each exposure level, including sham, the animals are distributed in a group of four exposure units. Each exposure unit contains two exposure volumes having uniform distribution of magnetic fields for the animals, while the magnetic field external to the unit falls off rapidly due to the "figure-eight" coil topography used. A program of "shake down" tests, followed by verification and calibration of the exposure facility, was carried out prior to starting the animal experiments. Continuous monitoring of the magnetic field and other environmental parameters was an important part in the overall quality assurance program adopted.  相似文献   

12.
Seeds of hornwort (Cryptotaenia japonica Hassk) were exposed to sinusoidally time-varying extremely low frequency (ELF) magnetic fields (AC fields) in combination with the local geomagnetic field (DC field). Exposure lasted 24 h/day for 16 days. Three directions of the AC magnetic fields were considered; the vertical (magnetic flux density B ACV, the directions parallel B ACparallel), and perpendicular B ACperpendicular to the direction of total geomagnetic field (magnetic flux density BG) in the geomagnetic plane (GP). Controls consisted of seeds exposed to zero AC magnetic fields in combination with the DC magnetic field. The B ACV in combination with BG effectively promoted the germination of hornwort seeds when applied at 750 microT (RMS) at 7 Hz or 500 microT (RMS) at 14 Hz from among the cases of individual frequencies f = 3.5, 7.0, 10.5, 14.0 Hz at 500 and 750 microT. The B ACparallel promoted the germination of hornwort seeds more effectively than the B ACperpendicular in combination with BG when 500 and 750 microT at 7 Hz were applied.  相似文献   

13.
Recent epidemiological studies suggest a link between transport magnetic fields (MF) and certain adverse health effects. We performed measurements in workplaces of engineers on Russian DC and Swiss AC powered (16.67 Hz) electric trains using a computer based waveform capture system with a 200 Hz sampling rate. MF in DC and AC trains show complex combinations of static and varying components. The most probable levels of quasistatic MF (0.001-0.03 Hz) were in the range 40 microT. Maximum levels of 120 microT were found in DC powered locomotives. These levels are much higher than the geomagnetic field at the site of measurements. MF encountered both in DC and AC powered rail systems showed irregular temporal variability in frequency composition and amplitude characteristics across the whole frequency range studied (0-50 Hz); however, more than 90% of the magnetic field power was concentrated in frequencies 相似文献   

14.
The aim of this experiment was to investigate the influence of repeated exposure to 10, 20, 30 or 40 Hz magnetic fields at 0.1 T on the learning of male golden hamsters in a Skinner box, in which the animals learned to press a lever to receive a food reward. The latency of the first response was not affected by exposure to the magnetic fields used in this experiment. No significant field-dependent effects on the performance of the task were observed in males exposed to 10 and 20 Hz magnetic fields at 0.1 T. However, exposure significantly improved the learning of the task in animals exposed to 30 and 40 Hz magnetic fields at 0.1 T.  相似文献   

15.
Calcium-ion uptake by normal and leukemia lymphocytes increased during a 30-min exposure to a 13.6 Hz, sinusoidal magnetic field at 20 microT peak. The time-varying field was horizontal and parallel to a 16.5 microT component of the ambient static magnetic field. The uptake of 45Ca2+ increased 102% in a line of murine, cytotoxic T-lymphocytes (C57B1/6-derived CTLL-1), increased 126% in freshly-isolated spleen lymphocytes (C57B1/6 mice), and increased 75% in a line of lymphoma cells (C57B1/6-derived EL4). In contrast, there was no effect when the same field was applied for 30 min immediately before--as opposed to during--incorporation of calcium ions. When spleen lymphocytes were exposed during incubation with 45Ca2+ to a 60 Hz magnetic field at 20 microT peak, a small but statistically significant increase (37%) in uptake of the labeled ions occurred. These results indicate that weak, alternating magnetic fields might affect calcium-dependent functions of normal and leukemic lymphocytes.  相似文献   

16.
This study sought to estimate the relative contribution of exposure to 50 Hz magnetic fields experienced at home, at work/school, or elsewhere to the total exposure over 24 hr. Personal exposure meters were carried by 97 adults and children in the Stockholm area. About half of the subjects lived close (<50 m) to a transmission line and half far (>100 m) away. Spot measurements and calculations for the residential exposure were also made. For subjects living<50 m from the line, the exposure at home contributed about 80% of the total magnetic field exposure, measured in mT-hours. Adults living far away experienced only 38% of the total exposure at home, but children still received 55%. Subjects with low time-weighted average (TWA) exposure both at home and at work spent 84% of their time in fields <0.1 microT, and those with high TWA at both locations spent 69% of their time in fields > or = 0.2 microT. This contrast was diluted if only exposure at one location was considered. For spot measurements and calculations of the residential exposure, both sensitivity and specificity was good. However, the intermediate field exposure category (0.1-0.19 microT) showed poor correlation to the 24 hr personal measurements.  相似文献   

17.
The present study investigated both the direct and delayed effects of a 50 Hz, 100 microT magnetic field on human performance. Eighty subjects completed a visual duration discrimination task, half being exposed to the field and the other half sham exposed. The delayed effects of this field were also examined in a recognition memory task that followed immediately upon completion of the discrimination task, Unlike our earlier studies, we were unable to find any effects of the field on reaction time and accuracy in the visual discrimination task. However, the field had a delayed effect on memory, producing a decrement in recognition accuracy. We conclude that after many years of experimentation, finding a set of magnetic field parameters and human performance measures that reliably yield magnetic field effects is proving elusive. Yet the large number of significant findings suggests that further research is warranted.  相似文献   

18.
19.
We have studied the effect of extremely low frequency electromagnetic fields (ELF-EMF) in the presence of a second stressor (mild heat shock) on the expression of a lacZ reporter gene under the control of hsp16 or hsp70 promoters in two transgenic strains of C. elegans. The expression of the reporter gene was studied by scoring animals with induced beta-galactosidase activity after staining in toto or by biochemical quantitation of the enzyme activity, respectively. In our experimental setup we were able to expose the animals to 50 Hz magnetic flux density of 0-150 microT and at the same time control temperature with high precision (+/-0.1 degrees C). Experimental conditions were defined for which EMF strongly enhances the expression of the reporter gene.  相似文献   

20.
BACKGROUND: There are several reports that indicate a linkage between exposure to power frequency (50 - 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model. METHODS: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 microT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver. RESULTS: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 microT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 microT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure. CONCLUSIONS: Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号