首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.  相似文献   

2.
Da Lage JL  Danchin EG  Casane D 《FEBS letters》2007,581(21):3927-3935
Alpha-amylases are widely found in eukaryotes and prokaryotes. Few amino acids are conserved among these organisms, but at an intra-kingdom level, conserved protein domains exist. In animals, numerous conserved stretches are considered as typical of animal alpha-amylases. Searching databases, we found no animal-type alpha-amylases outside the Bilateria. Instead, we found in the sponge Reniera sp. and in the sea anemone Nematostella vectensis, alpha-amylases whose most similar cognate was that of the amoeba Dictyostelium discoideum. We found that this "Dictyo-type" alpha-amylase was shared not only by these non-Bilaterian animals, but also by other Amoebozoa, Choanoflagellates, and Fungi. This suggested that the Dictyo-type alpha-amylase was present in the last common ancestor of Unikonts. The additional presence of the Dictyo-type in some Ciliates and Excavates, suggests that horizontal gene transfers may have occurred among Eukaryotes. We have also detected putative interkingdom transfers of amylase genes, which obscured the historical reconstitution. Several alternative scenarii are discussed.  相似文献   

3.
Testate lobose amoebae (order Arcellinida Kent, 1880) are common in all aquatic and terrestrial habitats, yet they are one of the last higher taxa of unicellular eukaryotes that has not found its place in the tree of life. The morphological approach did not allow to ascertain the evolutionary origin of the group or to prove its monophyly. To solve these challenging problems, we analyzed partial small-subunit ribosomal RNA (SSU rRNA) genes of seven testate lobose amoebae from two out of the three suborders and seven out of the 13 families belonging to the Arcellinida. Our data support the monophyly of the order and clearly establish its position among Amoebozoa, as a sister-group to the clade comprising families Amoebidae and Hartmannellidae. Complete SSU rRNA gene sequences from two species and a partial actin sequence from one species confirm this position. Our phylogenetic analyses including representatives of all sequenced lineages of lobose amoebae suggest that a rigid test appeared only once during the evolution of the Amoebozoa, and allow reinterpretation of some morphological characters used in the systematics of Arcellinida.  相似文献   

4.
The Amoebozoa are a major eukaryotic lineage that encompasses a wide range of amoeboid organisms. The group is understudied from a systematic perspective: molecular tools have only been applied in the last 15 yr. Hence, there is an undersampling of both genes and taxa in the group especially compared to plants, animals, and fungi. Here, we present the complete mitochondrial genomes of two ubiquitous and abundant morpho‐species (Acanthamoeba castellanii and Vermamoeba vermiformis). Both have mitochondrial genomes of close relatives previously available, enabling insights into recent divergences at a genomic scale, while simultaneously offering comparisons with divergence estimates obtained from traditionally used single genes, SSU rDNA and cox1. The newly sequenced mt genomes are significantly divergent from their previously sequenced conspecifics (A. castellannii 16.4% divergence at nucleotide level and 10.4% amino acid; V. vermiformis 21.6% and 13.1%, respectively), while divergence at the small subunit ribosomal DNA is below 1% within both species. Morphological analyses determined that these lineages are indistinguishable from their previously sequenced counterparts. Phylogenetic reconstructions using 26 mt genes also indicate a level of divergence that is comparable to divergence among species, while reconstructions using the small subunit ribosomal DNA (SSU rDNA) do not. In addition, we demonstrate that between closely related taxa, there are high levels of synteny, which can be explored for primer design to obtain larger fragments than the traditional barcoding genes. We conclude that, although most systematic work has relied on SSU, this gene alone can severely underestimate diversity. Thus, we suggest that the mt genome emerges as an alternative for unraveling the lower level phylogenetic relationships of Amoebozoa.  相似文献   

5.
Amoebae of the order Vannellida (Amoebozoa, Discosea) have a fairly recognizable spatulate, fan-shaped or semi-circular outlines and a wide area of frontal hyaloplasm. They can be easily distinguished from the other groups of lobose amoebae even by light microscopy. The dorsal side of these amoebae is usually smooth and rarely bears ridges or folds, which are never numerous or regular. We have isolated an unusual species of vannellid amoebae, called Vannella primoblina n. sp. from a terrestrial substrate. It has well-developed dorsal relief consisting of regularly appearing folds and ridges. This amoeba superficially resembles members of the genus Thecamoeba. However, molecular analysis showed that this strain belongs to the genus Vannella. This finding indicates that dorsal folds may also be a characteristic of some species of vannellid amoebae and probably are a functional detail of the cell morphology rather than an apomorphy of Thecamoebida lineage. Overall outlines of the cell and the presence of the expanded frontal hyaline area remains the most reliable characters used to differentiate vannellid amoebae from other gymnamoebae lineages.  相似文献   

6.
We hypothesize that aspects of animal multicellularity originated before the divergence of metazoans from fungi and social amoebae. Polarized epithelial tissues are a defining feature of metazoans and contribute to the diversity of animal body plans. The recent finding of a polarized epithelium in the non-metazoan social amoeba Dictyostelium discoideum demonstrates that epithelial tissue is not a unique feature of metazoans, and challenges the traditional paradigm that multicellularity evolved independently in social amoebae and metazoans. An alternative view, presented here, is that the common ancestor of social amoebae, fungi, and animals spent a portion of its life cycle in a multicellular state and possessed molecular machinery necessary for forming an epithelial tissue. Some descendants of this ancestor retained multicellularity, while others reverted to unicellularity. This hypothesis makes testable predictions regarding tissue organization in close relatives of metazoans and provides a novel conceptual framework for studies of early animal evolution. Editor's suggested further reading in BioEssays Searching for Eve: Basal metazoans and the evolution of multicellular complexity Abstract.  相似文献   

7.
Romeralo M  Escalante R  Baldauf SL 《Protist》2012,163(3):327-343
Dictyostelid social amoebae are a large and ancient group of soil microbes with an unusual multicellular stage in their life cycle. Taxonomically, they belong to the eukaryotic supergroup Amoebozoa, the sister group to Opisthokonta (animals + fungi). Roughly half of the ~150 known dictyostelid species were discovered during the last five years and probably many more remain to be found. The traditional classification system of Dictyostelia was completely overturned by cladistic analyses and molecular phylogenies of the past six years. As a result, it now appears that, instead of three major divisions there are eight, none of which correspond to traditional higher-level taxa. In addition to the widely studied Dictyostelium discoideum, there are now efforts to develop model organisms and complete genome sequences for each major group. Thus Dictyostelia is becoming an excellent model for both practical, medically related research and for studying basic principles in cell-cell communication and developmental evolution. In this review we summarize the latest information about their life cycle, taxonomy, evolutionary history, genome projects and practical importance.  相似文献   

8.
Free-living protozoa allow horizontal gene transfer with and between the microorganisms that they host. They host mycobacteria for which the sources of transferred genes remain unknown. Using BLASTp, we searched within the genomes of 15 mycobacteria for homologous genes with 34 amoeba-resistant bacteria and the free-living protozoa Dictyostelium discoideum. Subsequent phylogenetic analysis of these sequences revealed that eight mycobacterial open-reading frames (ORFs) were probably acquired via horizontal transfer from beta- and gamma-Proteobacteria and from Firmicutes, but the transfer histories could not be reliably established in details. One further ORF encoding a pyridine nucleotide disulfide oxidoreductase (pyr-redox) placed non-tuberculous mycobacteria in a clade with Legionella spp., Francisella spp., Coxiella burnetii, the ciliate Tetrahymena thermophila and D. discoideum with a high reliability. Co-culturing Mycobacterium avium and Legionella pneumophila with the amoeba Acanthamoeba polyphaga demonstrated that these two bacteria could live together in amoebae for five days, indicating the biological relevance of intra-amoebal transfer of the pyr-redox gene. In conclusion, the results of this study support the hypothesis that protists can serve as a source and a place for gene transfer in mycobacteria.  相似文献   

9.
Amoeboid life forms can be found throughout the evolutionary tree. The greatest proportion of these life forms is found in the Amoebozoa clade, one of the six major eukaryote evolutionary branches. Despite its common origin this clade exhibits a wide diversity of lifestyles including free‐living and parasitic species and species with multicellular and multinucleate life stages. In this group, development, cooperation, and social behaviour can be studied in addition to traits common to unicellular organisms. To date, only a few Amoebozoa genomes have been sequenced completely, however a number of expressed sequence tags (ESTs) and complete and draft genomes have become available recently for several species that represent some of the major evolutionary lineages in this clade. This resource allows us to compare and analyse the evolutionary history and fate of branch‐specific genes if properly exploited. Despite the large evolutionary time scale since the emergence of the major groups the genomic organization in Amoebozoa has retained common features. The number of Amoebozoa‐specific genetic inventions seems to be rather small. The emergence of subgroups is accompanied by gene and domain losses and acquisitions of bacterial gene material. The sophisticated developmental cycles of Myxogastria and Dictyosteliida likely have a common origin and are deeply rooted in amoebozoan evolution. In this review we describe initial approaches to comparative genomics in Amoebozoa, summarize recent findings, and identify goals for further studies.  相似文献   

10.
Watkins RF  Gray MW 《Protist》2008,159(2):269-281
From comparative analysis of EST data for five taxa within the eukaryotic supergroup Amoebozoa, including two free-living amoebae (Acanthamoeba castellanii, Hartmannella vermiformis) and three slime molds (Physarum polycephalum, Hyperamoeba dachnaya and Hyperamoeba sp.), we obtained new broad-range perspectives on the evolution and biosynthetic capacity of this assemblage. Together with genome sequences for the amoebozoans Dictyostelium discoideum and Entamoeba histolytica, and including partial genome sequence available for A. castellanii, we used the EST data to identify genes that appear to be exclusive to the supergroup, and to specific clades therein. Many of these genes are likely involved in cell-cell communication or differentiation. In examining on a broad scale a number of characters that previously have been considered in simpler cross-species comparisons, typically between Dictyostelium and Entamoeba, we find that Amoebozoa as a whole exhibits striking variation in the number and distribution of biosynthetic pathways, for example, ones for certain critical stress-response molecules, including trehalose and mannitol. Finally, we report additional compelling cases of lateral gene transfer within Amoebozoa, further emphasizing that although this process has influenced genome evolution in all examined amoebozoan taxa, it has done so to a variable extent.  相似文献   

11.
The vampyrellids (Vampyrellida, Rhizaria) are naked amoebae of considerable genetic diversity. Three families have been well-defined (Vampyrellidae, Leptophryidae, and Placopodidae), but most vampyrellid lineages detected by environmental sequencing are poorly known or completely uncharacterized. In the brackish sediment of Lake Bras D’Or, Nova Scotia, Canada, we discovered an amoeba with a vampyrellid-like life history that was morphologically dissimilar from previously known vampyrellid taxa. We established a culture of this amoeba, studied its feeding behavior and prey range specificity, and characterized it with molecular phylogenetic methods and light and electron microscopy. The amoeba was a generalist predator (i.e. eukaryotroph), devouring a range of marine microalgae, with a strong affinity for some benthic diatoms and Chroomonas. Interestingly, the amoeba varied its feeding strategy depending on the prey species. Small diatoms were engulfed whole, while larger species were fed on through extraction with an invading pseudopodium. The SSU rRNA gene phylogenies robustly placed the amoeba in the most basal, poorly described lineage (“clade C”) of the Vampyrellida. Based on the phylogenetic position and the distinct morphology of the studied amoeba, we here describe it as Sericomyxa perlucida gen. et sp. nov., and establish the new vampyrellid family Sericomyxidae for “clade C.”  相似文献   

12.
ABSTRACT. Our knowledge of the diversity of amoeboid protists is rapidly expanding as new and old habitats are more fully explored. In 2003, while investigating the cause of an amoeboid disease afflicting lobsters on the East Coast, samples were examined for the presence of amoebae from the carapace washings of the American lobster, Homarus americanus . During this survey a unique community of gymnamoebae was discovered. Among the new taxa discovered was a small Thecamoeba -like organism with a single posteriorly directed pseudopodium. Although resembling Parvamoeba rugata , this amoeba displayed distinctive morphology from that isolate or any other amoebozoan. Phylogenetic analysis shows this amoeba is distantly related to the Thecamoebidae. In this paper we describe the unique morphology of a second species of Parvamoeba and discuss its phylogenetic position with respect to the "Amoebozoa."  相似文献   

13.
Sea anemones have a wide array of toxic compounds (peptide toxins found in their venom) which have potential uses as therapeutics. To date, the majority of studies characterizing toxins in sea anemones have been restricted to species from the superfamily, Actinioidea. No highly complete draft genomes are currently available for this superfamily, however, highlighting our limited understanding of the genes encoding toxins in this important group. Here we have sequenced, assembled, and annotated a draft genome for Actinia tenebrosa. The genome is estimated to be approximately 255 megabases, with 31,556 protein‐coding genes. Quality metrics revealed that this draft genome matches the quality and completeness of other model cnidarian genomes, including Nematostella, Hydra, and Acropora. Phylogenomic analyses revealed strong conservation of the Cnidaria and Hexacorallia core‐gene set. However, we found that lineage‐specific gene families have undergone significant expansion events compared with shared gene families. Enrichment analysis performed for both gene ontologies, and protein domains revealed that genes encoding toxins contribute to a significant proportion of the lineage‐specific genes and gene families. The results make clear that the draft genome of A. tenebrosa will provide insight into the evolution of toxins and lineage‐specific genes, and provide an important resource for the discovery of novel biological compounds.  相似文献   

14.
Amoebozoa represent one of the earliest branches from the last common ancestor of all eukaryotes and contain some of the most dangerous human pathogens. Two amoebozoan genomes -- from the model organism Dictyostelium discoideum and the human pathogen Entamoeba histolytica -- have been published this year. Owing to their high A+T content, both genomes were difficult to sequence. In addition to nine amoebozoan expressed sequence tag projects, efforts are underway for comparative sequencing of four additional Entamoeba species. The completed genome sequences of D. discoideum and E. histolytica revealed unusual telomere structures, a high percentage of repetitive elements and a remarkably high gene content that is close to the one of Drosophila melanogaster. Finally, both organisms are brilliant examples of the influence of the lifestyle of an organism on its genome.  相似文献   

15.
A new species of the “proteus-type” naked amoebae (large cells with discrete tubular pseudopodia) was isolated from tree bark sample of a birch tree in the surrounding of Kislovodsk town, Russia and named Polychaos centronucleolus n. sp. (Amoebozoa, Tubulinea). Amoebae of this species have a filamentous cell coat and a nucleus with a central compact nucleolus. This type of nucleolar organization has not been previously known for the genus Polychaos. A sequence of the 18S rRNA gene of this strain was obtained using whole genome amplification of DNA from the single amoeba cell, followed by NGS sequencing. The analysis of molecular data robustly groups this species with Polychaos annulatum within the family Hartmannellidae. Our results, together with the results of our previous studies, show that the taxonomic assignment of “proteus-type” amoebae species is becoming increasingly complex, and the taxonomic characters that can be used to classify these organisms are becoming more shadowed.  相似文献   

16.
17.
The genomes of the hemiascomycetes Saccharomyces cerevisiae and Ashbya gossypii have been completely sequenced, allowing a comparative analysis of these two genomes, which reveals that a small number of genes appear to have entered these genomes as a result of horizontal gene transfer from bacterial sources. One potential case of horizontal gene transfer in A. gossypii and 10 potential cases in S. cerevisiae were identified, of which two were investigated further. One gene, encoding the enzyme dihydroorotate dehydrogenase (DHOD), is potentially a case of horizontal gene transfer, as shown by sequencing of this gene from additional bacterial and fungal species to generate sufficient data to construct a well-supported phylogeny. The DHOD-encoding gene found in S. cerevisiae, URA1 (YKL216W), appears to have entered the Saccharomycetaceae after the divergence of the S. cerevisiae lineage from the Candida albicans lineage and possibly since the divergence from the A. gossypii lineage. This gene appears to have come from the Lactobacillales, and following its acquisition the endogenous eukaryotic DHOD gene was lost. It was also shown that the bacterially derived horizontally transferred DHOD is required for anaerobic synthesis of uracil in S. cerevisiae. The other gene discussed in detail is BDS1, an aryl- and alkyl-sulfatase gene of bacterial origin that we have shown allows utilization of sulfate from several organic sources. Among the eukaryotes, this gene is found in S. cerevisiae and Saccharomyces bayanus and appears to derive from the alpha-proteobacteria.  相似文献   

18.
The soil amoeba Dictyostelium discoideum is a haploid eukaryote that, upon starvation, aggregates and enters a developmental cycle to produce fruiting bodies. In this study, we infected single-cell stages of D. discoideum with different Legionella species. Intracellular growth of Legionella in this new host system was compared with their growth in the natural host Acanthamoeba castellanii . Transmission electron microscopy of infected D. discoideum cells revealed that legionellae reside within the phagosome. Using confocal microscopy, it was observed that replicating, intracellular, green fluorescent protein (GFP)-tagged legionellae rarely co-localized with fluorescent antibodies directed against the lysosomal protein DdLIMP of D. discoideum . This indicates that the bacteria inhibit the fusion of phagosomes and lysosomes in this particular host system. In addition, Legionella infection of D. discoideum inhibited the differentiation of the host into the multicellular fruiting stage. Co-culture studies with profilin-minus D. discoideum mutants and Legionella resulted in higher rates of infection when compared with infections of wild-type amoebae. Because the amoebae are amenable to genetic manipulation as a result of their haploid genome and because a number of cellular markers are available, we show for the first time that D. discoideum is a valuable model system for studying intracellular pathogenesis of microbial pathogens.  相似文献   

19.
Cochliopodium is a very distinctive genus of discoid amoebae covered by a dorsal tectum of carbohydrate microscales. Its phylogenetic position is unclear, since although sharing many features with naked "gymnamoebae", the tectum sets it apart. We sequenced 18S ribosomal RNA genes from three Cochliopodium species (minus, spiniferum and Cochliopodium sp., a new species resembling C. minutum). Phylogenetic analysis shows Cochliopodium as robustly holophyletic and within Amoebozoa, in full accord with morphological data. Cochliopodium is always one of the basal branches within Amoebozoa but its precise position is unstable. In Bayesian analysis it is sister to holophyletic Glycostylida, but distance trees mostly place it between Dermamoeba and a possibly artifactual long-branch cluster including Thecamoeba. These positions are poorly supported and basal amoebozoan branching ill-resolved, making it unclear whether Discosea (Glycostylida, Himatismenida, Dermamoebida) is holophyletic; however, Thecamoeba seems not specifically related to Dermamoeba. We also sequenced the small-subunit rRNA gene of Vannella persistens, which constantly grouped with other Vannella species, and two Hartmannella strains. Our trees suggest that Vexilliferidae, Variosea and Hartmannella are polyphyletic, confirming the existence of two very distinct Hartmannella clades: that comprising H. cantabrigiensis and another divergent species is sister to Glaeseria, whilst Hartmannella vermiformis branches more deeply.  相似文献   

20.
Gene duplication occurs repeatedly in the evolution of genomes, and the rearrangement of genomic segments has also occurred repeatedly over the evolution of eukaryotes. We studied the interaction of these two factors in mammalian evolution by comparing the chromosomal distribution of multigene families in human and mouse. In both species, gene families tended to be confined to a single chromosome to a greater extent than expected by chance. The average number of families shared between chromosomes was nearly 60% higher in mouse than in human, and human chromosomes rarely shared large numbers of gene families with more than one or two other chromosomes, whereas mouse chromosomes frequently did so. A higher proportion of duplicate gene pairs on the same chromosome originated from recent duplications in human than in mouse, whereas a higher proportion of duplicate gene pairs on separate chromosomes arose from ancient duplications in human than in mouse. These observations are most easily explained by the hypotheses that (1) most gene duplications arise in tandem and are subsequently separated by segmental rearrangement events, and (2) that the process of segmental rearrangement has occurred at a higher rate in the lineage of mouse than in that of human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号