首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. Am J Phys Anthropol 156:252–262, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Gorillas are the largest and among the most sexually dimorphic of all extant primates. While gorillas have been incorporated in broad-level comparisons among large-bodied hominoids or in studies of the African apes, comparisons between gorilla subspecies have been rare. During the past decade, however, behavioral, morphological, and molecular data from a number of studies have indicated that the western lowland (Gorilla gorilla gorilla) and eastern mountain (Gorilla gorilla beringei) subspecies differ to a greater extent than has been previously believed. In this study I compare patterns of relative growth of the postcranial skeleton to evaluate whether differences between subspecies result from the differential extension of common patterns of relative growth. In addition, patterns of ontogeny and sexual dimorphism are also examined. Linear skeletal dimensions and skeletal weight were obtained for ontogenetic series of male and female G.g. gorilla (n = 315) and G.g. beringei (n = 38). Bivariate and multivariate methods of analysis were used to test for differences in patterns of relative growth, ontogeny, and sexual dimorphism between sexes of each subspecies and in same-sex comparisons between subspecies. Results indicate males and females of both subspecies are ontogenetically scaled for postcranial proportions and that females undergo an earlier skeletal growth spurt compared to males. However, results also indicate that the onset of the female growth spurt occurs at different dental stages in lowland and mountain gorillas and that mountain gorillas may be characterized by higher rates of growth. Finally, data demonstrate lowland and mountain gorilla females do not differ significantly in adult body size, but mountain gorilla males are significantly larger than lowland gorilla males, suggesting mountain gorillas are characterized by a higher degree of sexual dimorphism in body size. Thus, although lowland and mountain gorillas do not appear to have evolved novel adaptations of the postcranium which correlate with differences in locomotor behavior, the present investigation establishes subspecies differences in ontogeny and sexual dimorphism which may be linked with ecological variation. Specifically, these findings are evaluated in the context of risk aversion models which predict higher growth rates and increased levels of sexual dimorphism in extreme folivores. Am. J. Primatol. 43:1–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
All non-human great apes are endangered in the wild, and it is therefore important to gain an understanding of their demography and genetic diversity. Whole genome assembly projects have provided an invaluable foundation for understanding genetics in all four genera, but to date genetic studies of multiple individuals within great ape species have largely been confined to mitochondrial DNA and a small number of other loci. Here, we present a genome-wide survey of genetic variation in gorillas using a reduced representation sequencing approach, focusing on the two lowland subspecies. We identify 3,006,670 polymorphic sites in 14 individuals: 12 western lowland gorillas (Gorilla gorilla gorilla) and 2 eastern lowland gorillas (Gorilla beringei graueri). We find that the two species are genetically distinct, based on levels of heterozygosity and patterns of allele sharing. Focusing on the western lowland population, we observe evidence for population substructure, and a deficit of rare genetic variants suggesting a recent episode of population contraction. In western lowland gorillas, there is an elevation of variation towards telomeres and centromeres on the chromosomal scale. On a finer scale, we find substantial variation in genetic diversity, including a marked reduction close to the major histocompatibility locus, perhaps indicative of recent strong selection there. These findings suggest that despite their maintaining an overall level of genetic diversity equal to or greater than that of humans, population decline, perhaps associated with disease, has been a significant factor in recent and long-term pressures on wild gorilla populations.  相似文献   

4.
Gorilla patterns of variation have great relevance for studies of human evolution. In this study, molar morphometrics were used to evaluate patterns of geographic variation in gorillas. Dental specimens of 323 adult individuals, drawn from the current distribution of gorillas in equatorial Africa were divided into 14 populations. Discriminant analyses and Mahalanobis distances were used to study population structure.Results reveal that: 1) the West and East African gorillas form distinct clusters, 2) the Cross River gorillas are well separated from the rest of the western populations, 3) gorillas from the Virunga mountains and the Bwindi Forest can be differentiated from the lowland gorillas of Utu and Mwenga-Fizi, 4) the Tshiaberimu gorillas are distinct from other eastern gorillas, and the Kahuzi-Biega gorillas are affiliated with them. These findings provide support for a species distinction between Gorilla gorilla and Gorilla beringei, with subspecies G. g. diehli, G. g. gorilla, G. b. graueri, G. b. beringei, and possibly, G. b. rex-pygmaeorum. Clear correspondence between dental and other patterns of taxonomic diversity demonstrates that dental data reveal underlying genetic patterns of differentiation.Dental distances increased predictably with altitude but not with geographic distances, indicating that altitudinal segregation explains gorilla patterns of population divergence better than isolation-by-distance. The phylogeographic pattern of gorilla dental metric variation supports the idea that Plio-Pleistocene climatic fluctuations and local mountain building activity in Africa affected gorilla phylogeography. I propose that West Africa comprised the historic center of gorilla distribution and experienced drift-gene flow equilibrium, whereas Nigeria and East Africa were at the periphery, where climatic instability and altitudinal variation promoted drift and genetic differentiation. This understanding of gorilla population structure has implications for gorilla conservation, and for understanding the distribution of sympatric chimpanzees and Plio-Pleistocene hominins.  相似文献   

5.
The geographical distribution of genetic variation within western lowland gorillas (Gorilla gorilla gorilla) was examined to clarify the population genetic structure and recent evolutionary history of this group. DNA was amplified from shed hair collected from sites across the range of the three traditionally recognized gorilla subspecies: western lowland (G. g. gorilla), eastern lowland (G. g. graueri) and mountain (G. g. beringei) gorillas. Nucleotide sequence variation was examined in the first hypervariable domain of the mitochondrial control region and was much higher in western lowland gorillas than in either of the other two subspecies. In addition to recapitulating the major evolutionary split between eastern and western lowland gorillas, phylogenetic analysis indicates a phylogeographical division within western lowland gorillas, one haplogroup comprising gorilla populations from eastern Nigeria through to southeast Cameroon and a second comprising all other western lowland gorillas. Within this second haplogroup, haplotypes appear to be partitioned geographically into three subgroups: (i) Equatorial Guinea, (ii) Central African Republic, and (iii) Gabon and adjacent Congo. There is also evidence of limited haplotype admixture in northeastern Gabon and southeast Cameroon. The phylogeographical patterns are broadly consistent with those predicted by current Pleistocene refuge hypotheses for the region and suggest that historical events have played an important role in shaping the population structure of this subspecies.  相似文献   

6.
Hand-clapping is a form of gestural communication commonly observed in captive great apes yet only isolated instances of this behaviour have been documented in the wild. Nearly 20 years ago Fay recorded the first observations of hand-clapping in western lowland gorillas (Gorilla gorilla gorilla) in the Central African Republic. Here we present observations of Likouala swamp gorillas using hand-clapping as a form of gestural communication in previously undocumented contexts in the wild. We observed hand-clapping on four different occasions in four different groups. The hand-clap was always exhibited by an adult female and always consisted of two consecutive claps conducted in front of the body. We suggest the functional significance of the behaviour was to maintain and enforce group cohesiveness during instances of alarm. These observations suggest western lowland gorillas have a means of communicating that is thus far absent in their eastern counterparts (Gorilla beringei ssp.). This could be a gestural culture found only in western lowland gorillas which should be investigated further to shed light on the evolution of communication among hominoids.  相似文献   

7.
Summary Electrophoretic mobilities of homologous erythrocyte enzymes at 21 loci studied in man (Homo sapiens), chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla) led to estimations of the genetic distances between the three species: If each form is placed at a corner of an isoscele triangle, the distance between the chimpanzee and either of the other two is greater than that between the latter two.  相似文献   

8.
Populations of an organism living in marked geographical or evolutionary isolation from other populations of the same species are often termed subspecies and expected to show some degree of genetic distinctiveness. The common chimpanzee (Pan troglodytes) is currently described as four geographically delimited subspecies: the western (P. t. verus), the nigerian‐cameroonian (P. t. ellioti), the central (P. t. troglodytes) and the eastern (P. t. schweinfurthii) chimpanzees. Although these taxa would be expected to be reciprocally monophyletic, studies have not always consistently resolved the central and eastern chimpanzee taxa. Most studies, however, used data from individuals of unknown or approximate geographic provenance. Thus, genetic data from samples of known origin may shed light on the evolutionary relationship of these subspecies. We generated microsatellite genotypes from noninvasively collected fecal samples of 185 central chimpanzees that were sampled across large parts of their range and analyzed them together with 283 published eastern chimpanzee genotypes from known localities. We observed a clear signal of isolation by distance across both subspecies. Further, we found that a large proportion of comparisons between groups taken from the same subspecies showed higher genetic differentiation than the least differentiated between‐subspecies comparison. This proportion decreased substantially when we simulated a more clumped sampling scheme by including fewer groups. Our results support the general concept that the distribution of the sampled individuals can dramatically affect the inference of genetic population structure. With regard to chimpanzees, our results emphasize the close relationship of equatorial chimpanzees from central and eastern equatorial Africa and the difficult nature of subspecies definitions. Am J Phys Anthropol 156:181–191, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human–chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1–1.5, 1.1–0.76 and 0.25–0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.  相似文献   

10.
Western lowland gorillas (Gorilla gorilla gorilla) were imported from across their geographical range to North American zoos from the late 1800s through 1974. The majority of these gorillas were imported with little or no information regarding their original provenance and no information on their genetic relatedness. Here, we analyze 32 microsatellite loci in 144 individuals using a Bayesian clustering method to delineate clusters of individuals among a sample of founders of the captive North American zoo gorilla collection. We infer that the majority of North American zoo founders sampled are distributed into two distinct clusters, and that some individuals are of admixed ancestry. This new information regarding the existence of ancestral genetic population structure in the North American zoo population lays the groundwork for enhanced efforts to conserve the evolutionary units of the western lowland gorilla gene pool. Our data also show that the genetic diversity estimates in the founder population were comparable to those in wild gorilla populations (Mondika and Cross River), and that pairwise relatedness among the founders is no different from that expected for a random mating population. However, the relatively high level of relatedness (R = 0.54) we discovered in a pair of known breeding pairs reveals the need for incorporating genetic relatedness estimates in the captive management of western lowland gorillas.  相似文献   

11.
The most important environmental factor explaining interspecies variation in ecology and sociality of the great apes is likely to be variation in resource availability. Relatively little is known about the activity patterns of western lowland gorillas (Gorilla gorilla gorilla), which inhabit a dramatically different environment from the well‐studied mountain gorillas (G. beringei beringei). This study aims to provide a detailed quantification of western lowland gorillas' activity budgets using direct observations on one habituated group in Bai Hokou, Central African Republic. We examined how activity patterns of both sexes are shaped by seasonal frugivory. Activity was recorded with 5‐min instantaneous sampling between December 2004 and December 2005. During the high‐frugivory period the gorillas spent less time feeding and more time traveling than during the low‐frugivory period. The silverback spent less time feeding but more time resting than both females and immatures, which likely results from a combination of social and physiological factors. When compared with mountain gorillas, western lowland gorillas spend more time feeding (67 vs. 55%) and traveling (12 vs. 6.5%), but less time resting (21 vs. 34%) and engaging in social/other activities (0.5 vs. 3.6%). This disparity in activity budgets of western lowland gorillas and mountain gorillas may be explained by the more frugivorous diet and the greater dispersion of food resources experienced by western lowland gorillas. Like other apes, western lowland gorillas change their activity patterns in response to changes in the diet. Am. J. Primatol. 71:91–100, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Methods for the identification of the sex and species of individuals from samples non-invasively taken from humans and gorillas were established. Amplification of a segment of amelogenin (AMG), which is an X–Y homologous gene, using two pairs of primers from human AMG, revealed both X- and Y-specific bands. The possibility of sex identification was examined by typing the AMG gene using hair and fecal samples from captive western lowland gorillas (Gorilla gorilla gorilla) in Japan and hair samples from wild eastern lowland gorillas (Gorilla beringei graueri) in the Kahuzi-Biega National Park, Democratic Republic of Congo, which were sexed by direct observation. Species-specific bands of AMG in gorillas and humans were identified by restriction fragment length polymorphisms analysis. These tests could be used for sexing unidentified individuals of wild western and eastern lowland gorillas, and screening contamination of human DNA from non-invasively acquired samples.  相似文献   

13.

Background  

Today many large mammals live in small, fragmented populations, but it is often unclear whether this subdivision is the result of long-term or recent events. Demographic modeling using genetic data can estimate changes in long-term population sizes while temporal sampling provides a way to compare genetic variation present today with that sampled in the past. In order to better understand the dynamics associated with the divergences of great ape populations, these analytical approaches were applied to western gorillas (Gorilla gorilla) and in particular to the isolated and Critically Endangered Cross River gorilla subspecies (G. g. diehli).  相似文献   

14.
Paternity exclusion studies provide useful information for testing certain theories of behavioral ecology and for the management and conservation of both wild and captive populations of endangered species. This study used eight human nuclear microsatellite loci, in the absence of species-specific PCR primers, to genetically identify the sires of 12 captive lowland gorillas (Gorilla gorilla gorilla) and 2 captive orangutans (Pongo pygmaeus pygmaeus andPongo p. abelii). Parentage assignments were confirmed by excluding all except a single potential sire for each offspring with the least two loci. Sire-offspring relationships were verified in 12 of the 14 cases, and reassigned in the case of two gorilla offspring. The orangutan paternity typing was supplemented by DNA fingerprinting. Additionally, five of the eight microsatellite loci, in conjunction with behavioral data, were used for a non-exhaustive set of paternity exclusions for five wild mountain gorillas (Gorilla g. beringei). The eight loci described in this study should be useful additions to the tools available for the study of genetics in the great apes.  相似文献   

15.
Mountain gorillas (Gorilla beringei beringei) in Karisoke, Rwanda, feed on the stinging nettle Laportea alatipes by means of elaborate processing skills. Byrne [e.g. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 358:529–536, 2003] has claimed that individuals acquire these skills by means of the so‐called program‐level imitation, in which the overall sequence of problem‐solving steps (not the precise actions) is reproduced. In this study we present western lowland gorillas (Gorilla gorilla gorilla) with highly similar nettles. Twelve gorillas in three different groups (including also one nettle‐naïve gorilla) used the same program‐level technique as wild mountain gorillas (with differences mainly on the action level). Chimpanzees, orangutans, and bonobos did not show these program‐level patterns, nor did the gorillas when presented with a plant similar in structural design but lacking stinging defenses. We conclude that although certain aspects (i.e. single actions) of this complex skill may be owing to social learning, at the program level gorilla nettle feeding derives mostly from genetic predispositions and individual learning of plant affordances. Am. J. Primatol. 70:584–593, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.

Background

We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee''s closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species'' markedly different social and mating behaviors.

Methodology/Principal Findings

Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo.

Conclusion/Significance

High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans—species that are not subject to sperm competition—showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA sequences, but is also shaped by the social and behavioral circumstances under which the specific species has evolved.  相似文献   

17.
Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa.  相似文献   

18.
Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions.  相似文献   

19.
Pan and Gorilla taxonomy is currently in a state of flux, with the number of existing species and subspecies of common chimpanzee and gorilla having been recently challenged. While Pan and Gorilla systematics have been evaluated on the basis of craniometric and odontometric data, only a handful of studies have evaluated multivariate craniometric variation within P. troglodytes, and none have evaluated in detail mandibular variation in either P. troglodytes or Gorilla gorilla. In this paper, we examine ontogenetic and adult mandibular variation in Pan and Gorilla. We test the hypothesis that patterns and degrees of mandibular variation in Pan and Gorilla closely correspond to those derived from previous analyses of craniometric variation. We then use these data to address some current issues surrounding Pan and Gorilla taxonomy. Specifically, we evaluate the purported distinctiveness of P.t. verus from the other two subspecies of Pan troglodytes, and the recent proposals to recognize Nigerian gorillas as a distinct subspecies, Gorilla gorilla diehli, and to acknowledge mountain and lowland gorillas as two separate species. Overall, patterns and degrees of multivariate mandibular differentiation parallel those obtained previously for the cranium and dentition. Thus, differences among the three conventionally recognized gorilla subspecies are somewhat greater than among subspecies of common chimpanzees, but differences between P. paniscus and P. troglodytes are greater than those observed between any gorilla subspecies. In this regard, the mandible does not appear to be more variable, or of less taxonomic value, than the face and other parts of the cranium. There are, however, some finer differences in the pattern and degree of morphological differentiation in Pan and Gorilla, both with respect to cranial and dental morphology, and in terms of the application and manner of size adjustment. Mandibular differentiation supports the conventional separation of bonobos from chimpanzees regardless of size adjustment, but size correction alters the relative alignment of taxa. Following size correction, intergroup distances are greatest between P.t. verus and all other groups, but there is considerable overlap amongst chimpanzee subspecies. Amongst gorillas, the greatest separation is between eastern and western gorillas, but adjustment relative to palatal vs. basicranial length results in a greater accuracy of group classification for G.g. gorilla and G.g. graueri, and more equivalent intergroup distances amongst all gorilla groups. We find no multivariate differentiation of the Nigerian gorillas based on mandibular morphology, suggesting that the primary difference between Nigerian and other western lowland gorillas lies in the nuchal region. Though intergroup distances are greatest between P.t. verus and other chimpanzee subspecies, the degree of overlap amongst all three groups does not indicate a markedly greater degree of distinction in mandibular, as opposed to other morphologies. Finally, mandibular differentiation corroborates previous craniodental studies indicating the greatest distinction amongst gorillas is between eastern and western groups. Thus, patterns and degrees of mandibular variation are in agreement with other kinds of data that have been used to diagnose eastern and western gorillas as separate species.  相似文献   

20.
Western lowland gorillas (Gorilla gorilla gorilla) are designated as critically endangered and wild populations are dramatically declining as a result of habitat destruction, fragmentation, diseases (e.g., Ebola) and the illegal bushmeat trade. As wild populations continue to decline, the genetic management of the North American captive western lowland gorilla population will be an important component of the long‐term conservation of the species. We genotyped 26 individuals from the North American captive gorilla collection at 11 autosomal microsatellite loci in order to compare levels of genetic diversity to wild populations, investigate genetic signatures of a population bottleneck and identify the genetic structure of the captive‐born population. Captive gorillas had significantly higher levels of allelic diversity (t7 = 4.49, = 0.002) and heterozygosity (t7 = 4.15, = 0.004) than comparative wild populations, yet the population has lost significant allelic diversity while in captivity when compared to founders (t7 = 2.44, = 0.04). Analyses suggested no genetic evidence for a population bottleneck of the captive population. Genetic structure results supported the management of North American captive gorillas as a single population. Our results highlight the utility of genetic management approaches for endangered nonhuman primate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号