首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Production of cellulase by Trichoderma reesei from dairy manure   总被引:6,自引:0,他引:6  
Cellulase production by the fungi Trichoderma reesei was studied using dairy manure as a substrate. Data showed that T. reesei RUT-C30 had higher cellulase production than T. reesei QM 9414 and that a homogenized manure, treated by a blender to reduce fiber size, led to higher cellulase production. The cellulase production was further optimized by growing T. reesei RUT-C30 on homogenized manure. The effects of manure concentration, pH, and temperature on cellulase production were investigated with optimal parameter values determined to be 10 g/l manure (dry basis), 25.5 degrees C, and pH 5.7, respectively. Elimination of CaCl2, MgSO4, nitrogen sources (NH4+ and urea) and trace elements (Fe2+, Zn2+, Co2+ and Mn2+) from the original salt solution had no negative influence on the cellulase production, while phosphate elimination did reduce cellulase production. Based on above results, the final medium composition was simplified with manure additives being KH2PO4, tween-80 and CoCl2 only. Using this medium composition and a reaction time of 6-8 days, a maximum cellulase production activity of 1.74 IU/ml of filter paper activity, 12.22 IU/ml of CMCase activity, and 0.0978 IU/ml of beta-glucosidase was obtained. This filter paper activity is the highest ever reported in cellulase production from agricultural wastes.  相似文献   

2.
Inactivation of the cellulase of Trichoderma reesei (EC 3.2.1.4) by shear, is of sufficient magnitude to merit consideration in the design of equipment for the enzymatic hydrolysis of cellulose. The inac inactivation constant, kd, is a function of the flow rate of the enzyme solution through a fine capillary tube. kd increased slowly at low shear stress, and much more rapidly when the shear stress was greater than 15 dynes cm?2.  相似文献   

3.
通过(NH4)2SO4分级沉淀、HiPrep 26/10 Desalting凝胶色谱脱盐、Source 15 Q阴离子交换色谱技术,里氏木霉(Rut C-30)纤维素酶主要组分得以初步分开,再经过Source 15 S阳离子交换色谱、HiPrep Sephacryl S-100 HR凝胶过滤色谱、Superdex 75 PrepGrade凝胶过滤色谱进一步分离纯化,得到2个纯化的内切葡聚糖酶组分EGⅡ、EGⅠ和一个外切葡聚糖酶组分CBHⅠ;经过SDS-PAGE电泳鉴定为电泳纯,测得相对分子质量分别为5.22×104,5.62×104和6.90×104。EGⅡ的最适反应pH是5.6,最适反应温度为65℃;EGⅠ的最适反应pH是4.4,最适反应温度为55℃;以羧甲基纤维素(CMC)为底物时,EGⅠ、EGⅡ的米氏常数(Km)分别为2.20 mg/mL、3.38 mg/mL。CBHⅠ的最适反应pH是5.8,最适反应温度为60℃,以对硝基苯基-β-D-纤维二糖苷(PNPC)为底物时,米氏常数(Km)为0.12 mg/mL。  相似文献   

4.
研究C、N源对里氏木霉(Trichoderma reesei)生产纤维素酶的影响,采用单因素实验方法和中心复合方法对发酵培养基进行优化。单因素实验表明:黄豆饼粉、玉米芯、玉米浆对纤维素酶的影响显著。通过响应面优化,得到最优培养基C、N源的组成:黄豆饼粉32.21 g/L,玉米芯42.29 g/L,玉米浆4.45 g/L。优化条件下,摇瓶发酵7 d的比酶活达到(10.65±0.50)U/mL。  相似文献   

5.
6.
Trichoderma reesei is an important cellulase producer and its secondary mycelial phase is responsible for cellulase expression and secretion in submerged fermentation. Little is known regarding the effects of fungal morphology on cellulase production by Trichoderma sp. In this study we aimed to extend the understanding of cellulase production by T. reesei, especially correlating cellulase productivity with pellet morphology and with its secretome characteristics. We found that T. reesei was more likely to form pellets in malt extract broth than in potato dextrose broth. CaCO(3) helped in formation of fine pellets in malt extract broth. 10(9) spores/ml resulted in formation of pellets with the size of 0.13 ± 0.047 mm. LC/MS spectrometry analysis indicated that the secretomes from pellet was different from that of mycelial mat under the same fermentation conditions. Optimization tests showed that lactose, xylose and Pluronic F68 are important for efficient production of cellulases with FPU activity in the pellets fermentation. This is the first report on the artificial formation of pellets by Trichoderma sp. as well as correlation between physiological characteristic of the pellets and cellulase production by T. reesei. The findings from this study can be used for improvement of cellulase productivity.  相似文献   

7.
Crystalline cellulase has been electrochemically oxidized to yield preparations containing various different percentages of oxidized end-groups. These celluloses have been used as carbon sources for growth and cellulase production by Trichoderma reesei . A low content of oxidized end groups in the celluloses (0.1–0.65%) stimulated cellulase production but not growth, whereas higher contents (> 1%) where inhibitory to both. The cellulolytic enzyme system secreted under stimulated conditions contained the same proportion of individual cellulase enzymes (cellobiohydrolase I and II, endoglucanase I) as the control, indicating a general stimulatory effect of oxidized cellulose. Activity of cellulases against oxidized celluloses in vitro was not stimulated, and only slightly inhibitory at high degrees of oxidation. The data support a potential role of cellulose oxidation in regulating cellulase formation by T. reesei .  相似文献   

8.
Induction of synthesis of cellulolytic enzymes in Trichoderma reesei QM 9414 by cellobiono-1,5-lactone (CBL) has been investigated in a replacement system lacking additional carbon source. CBL induced cellulase secretion optimally at pH 5 and a concentration of 70 g/ml. Higher concentrations lead to lower induction. De novo induction of cellulases was proven by the inhibitory effect of cycloheximide addition. Induction by CBL was shown to act synergistically on induction by sophorose, as it decreased the concentration of sophorose required for maximal induction. Maximal endo--1,4-glucanase activities induced by either sophorose or CBL were comparable. The CBL-induced cellulase system contained all the major cellulolytic enzymes of T. reesei, i.e. cellobiohydrolase I and II, and endoglucanase I, as shown by SDS-PAGE, Western blotting and detection with specific mono- and polyclonal antibodies. No differences were seen in the types of individual enzymes formed upon induction by either sophorose or CBL. No other hydrolytic enzymes appear to be induced by CBL (i.e. amylase, laminarinase, xylanase).Abbreviations SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium-dodecylsulfate - CBL cellobiono-1,5-lacton - CBH cellobiohydrolase - EG endoglucanase - IgG immunoglobulin G  相似文献   

9.
Adsorption of Trichoderma reesei CBHI cellulase on silanized silica   总被引:1,自引:0,他引:1  
Adsorption kinetics and surfactant-mediated elution of Trichoderma reesei CBHI cellulase were recorded in situ, at hydrophobic, silanized silica. Experiments were performed at different solution concentrations, ranging from 0.001 to 0.98 mg/mL. Adsorbed enzyme was partially elutable upon rinsing, with the amount of adsorbed mass remaining being highest at intermediate concentrations. In addition, the resistance to elution with buffer was generally lower at higher concentrations, and the resistance to elution with surfactant was generally lower at intermediate concentrations. These observations are tentatively explained with reference to a mechanism allowing for adsorption of associated monomers of CBHI as well as free monomers.  相似文献   

10.
A combination of ionic strength reduction and diafiltration of Trichoderma reesei cellulate complex through a hollow fiber apparatus of 5000 molecular weight (MW) cutoff and subsequent passage of filtrate over a Spherogel-TSK 3000-SW column provided extracts that had the ability to generate microfibrils in filter paper and to disrupt filter paper and corn leaf tissue. Milligram quantities of material obtained from these extracts released small amounts of soluble carbohydrate from filter paper, required ferric iron for increased activity, and contained amino acids. Short fiber formation and disruption of filter paper during interaction with these extracts was enhanced by prior acid treatment and eliminated by prior base treatment. The amount of soluble carbohydrate hydrolyzed in 24 h from filter paper by whole cellulase complex was not changed by first disrupting the substrate with the extracts.  相似文献   

11.
The desorption of Trichoderma reesei cellulase from Avicel by a wide range of desorbents was measured. Emphasis was placed on desorption at alkaline pH. A maximum desorption of 65-68% Avicelase activity was achieved by contact with NaOH, pH 10.0, at 40 degrees C for 5 min in the presence of 0.005% Triton X-100 or Tween 80. The design of a suitable desorption process using these conditions is discussed. Glycerol was also effective as a desorbent either alone or in combination with alkali and detergent. However, relatively high concentrations of glycerol were needed and the maximum desorption achieved, 68%, was not significantly greater than that with only alkali and detergent.  相似文献   

12.
13.
Summary The feasibility of cellulase production by Trichoderma reesei using inexpensive lignocellulosic material was examined. Sulfite pulp used as standard substrate yielded 3.7 IU/ml filter paper units (FPU) and 2.15 IU/ml -glucosidase. The yield was 185 FPU per gram total carbohydrate (CH) in the fermentation medium. Steam treated wheat straw (2%) gave 1.9 FPU/ml, 0.83 IU/ml -glucosidase and 151 FPU/g CH, whereas the spent fibres remaining after enzymatic hydrolysis of steamed wheat straw gave 2.4 FPU/ml, 1.55 IU/ml -glucosidase and 147 FPU/g CH. A good substrate (3%) was also the combustible fraction of municipal waste (BRAM) treated with NaOH, which gave 2.5 FPU/ml, 0.86 IU/ml -glucosidase and 130 FPU/g CH. A further increase in the final enzyme titer is obtainable by increasing the substrate concentration. In shake cultures 5% steamed wheat straw gave 3.8 FPU/ml and 1.95 IU/ml -glucosidase. Untreated wheat straw gave only low final enzyme titers and low yields of FPU/g CH. In the case of lignocellulosic substrates a constant pH-value of pH 6.0 during the fermentation gave optimal yields.  相似文献   

14.
15.
Numerical simulations and experimental validation were performed to understand the effects of hydrodynamics on pellet formation and cellulase production by filamentous T. reesei. The constructed model combined a steady-state multiple reference frame (MRF) approach describing mechanical mixing, oxygen mass transfer, and non-Newtonian flow field with a transient sliding mesh approach and kinetics of oxygen consumption, pellet formation, and enzyme production. The model was experimentally validated at various agitation speeds in a two-impeller Rushton turbine fermentor. Results from simulation and experimentation showed that higher agitation speeds led to increases in the pellet diameter and the proportion of pelletized (vs. filamentous) forms of the biomass. It also led to increase in dissolved oxygen mass transfer rate in shear-thinning fluid and cellulase productivity. The extent of these increases varied considerably among agitation speeds. Pellet formation and morphology were presumably affected within a viscosity-dependent shear-rate range. Cellulase activity and cell viability were shown to be sensitive to impeller shear. A maximum cellulase activity of 3.5 IU/mL was obtained at 400 rpm, representing a twofold increase over that at 100 rpm.  相似文献   

16.
Cellulase production using corn cob residue from xylose manufacture as substrate was carried out by Trichoderma reesei ZU-02. It was found that on the same cellulose basis, the cellulase activity and yield produced on corn cob residue were comparable with that on purified cellulose. Under batch process, the optimum concentration of substrate was 40 g/l and the optimum C/N ratio was 8.0. In 500 ml flasks, cellulase activity reached 5.25 IU/ml (213.4 IU/g cellulose) after seven days' cultivation. In a 30 m(3) stirred fermenter for large scale production, cellulase and cellobiase activity were 5.48 IU/ml (222.8 IU/g cellulase) and 0.25 IU/ml (10.2 IU/g cellulose), respectively, after four days' submerged fermentation. The produced cellulase could effectively hydrolyze the corn cob residue, and the yield of enzymatic hydrolysis reached 90.4% on 10% corn cob residue (w/v) when the cellulase dosage was 20 IU/g substrate.  相似文献   

17.
Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells.  相似文献   

18.
Adsorption reversibility and competition between fractionated components of the Trichoderma reesei cellulase system were studied. Specific endoglucanase (EGI), nonspecific endoglucanases (EGII, EGIII), and cellobio-hydrolase (CBHI) were previously grouped according to their hydrolytic function. At 5 degrees C, direct evidence of exchange between adsorbed and free enzyme was obtained for each component using [(3)H] and [(14)C] radiolabeled tracers. No release of bound enzymes was detected upon dilution of the free enzyme solution. In simultaneous adsorption of enzyme pairs, CBHI was shown to predominate adsorption. Endoglucanase EGI was preferentially adsorbed over EGII and EGIII. Sequential adsorption studies have shown that interaction between enzyme components largely determines the degree of their adsorption. Evidence suggests that both common and distinct adsorption sites exist and that their occupation depends on which components are involved. Predominance in adsorption by any one of the enzyme components is decreased at 50 degrees C. Light microscopy and monitoring of sugar production during cellulose hydrolysis provided evidence that reduction in the ionic strength decreases the adsorption predominance of CBHI and enhances the synergism between the cellulase components.  相似文献   

19.
Monoclonal antibodies have been used to determine the presence of cellobiohydrolases I and II (CBH I and II), and endoglucanase I (EG I) on the surface of conidia from Trichoderma reesei QM 9414 and RUT C-30, and 8 other Trichoderma species. For this purpose, proteins were released from the conidial surface by treatment with a non-ionic detergent (Triton X-100 and -octylglucoside), followed by SDS-PAGE/Western blotting and immunostaining. Both CBH I and II were clearly present, but — unlike in extracellular culture fluids from Trichoderma — CBH II was the predominant cellulase. In T. reesei EG I could not be detected. The higher producer strain T. reesei RUT C-30 exhibited a higher conidial level of CBH II than T. reesei QM 9414. In order to assess the importance of the conidial CBH II level for cellulase induction by cellulose, multiple copies of the chb2 gene were introduced into the T. reesei genome by cotransformation using PyrG as a marker. Stable multicopy transformants secreted the 2- to 4-fold level of CBH II into the culture medium when grown on lactose as a carbon source, but their CBH I secretion was unaltered. Upon growth on cellulose, both CBH I and CBH II secretion was enhanced. Those strain showing highest cellulase activity on cellulose also appeared to contain the highest level of conidial bound CBH II. CBH II was also the predominant conidial cellulase in various other Trichoderma sp. However, roughly the same amount of conidial bound CBH II was detected in all strains, although their cellulase production differed considerably.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号