首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
刘欣  宋雪萤  张晓萍  韩英伦  朱婷  肖蓉  李庆伟 《遗传》2015,37(11):1149-1159
近年来,在无颌类脊椎动物七鳃鳗体内发现了以可变淋巴细胞受体(Variable lymphocyte receptors, VLR)为基础的抗原识别机制。为揭示七鳃鳗鳃黏膜免疫系统中类淋巴细胞适应性免疫应答的遗传基础,探索无颌类与有颌类脊椎动物在适应性免疫应答机制上的进化关系,本文构建了日本七鳃鳗(Lampetra japonica)鳃囊组织免疫前后cDNA文库并进行了高通量转录组测序及分析。通过对组装得到的88 525个独立基因(Unigene)进行功能注释,分别有21 704和9769个unigene在GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库得到注释。999个unigene参与免疫系统的多个通路,其中184个与高等脊椎动物TCR(T cell receptor)和BCR(B cell receptor)信号通路的51个分子具有较高的同源关系,说明七鳃鳗体内存在高等脊椎动物适应性免疫应答信号通路的相关分子。本文还发现5个VLRA、7个VLRB和4个VLRC分子,说明七鳃鳗鳃黏膜免疫组织内至少分布3种类淋巴细胞亚群。实时荧光定量PCR结果显示,Lck、Fyn和Zap70基因在免疫激发后表达量显著上调,而Syk、Btk和Blnk基因表达没有显著变化,说明七鳃鳗鳃组织受到抗原刺激后,类似T淋巴细胞的信号转导途径被激活。本研究初步证明,尽管无颌类和有颌类脊椎动物的适应性免疫系统在抗原识别机制上存在不同,但具有共同的遗传基础。研究结果为探讨七鳃鳗VLRA+、VLRB+和VLRC+淋巴细胞免疫应答信号传导过程提供了有价值的线索。  相似文献   

2.
梁佼  刘欣  吴芬芳  李庆伟 《遗传》2009,31(10):969-976
在以七鳃鳗和盲鳗为代表的无颌类脊椎动物中, 虽然发现了与有颌类脊椎动物T细胞受体(T-cell receptors, TLRs)、B细胞受体 (B-cell receptors, BCRs)可变区具有相似结构的先天性免疫受体, 却从未发现有颌类脊椎动物适应性免疫系统的核心组分: TCRs、BCRs、组织相容性复合体 (Major histocompatibility complex, MHC)。因此, 长期以来, 人们一直认为适应性免疫系统只存在于有颌类脊椎动物中。但最近的一项发现彻底改变了这一传统观念, 即在无颌类脊椎动物中, 存在一种新型可变淋巴细胞受体VLRs(Variable lymphocyte receptors), VLRs通过改变亮氨酸富集序列LRRs(Leucine-rich repeats)的插入情况, 实现对特异性抗原的高效识别。晶体衍射分析发现, 盲鳗的VLRs呈现一种“马蹄”型结构, 抗原结合位点则位于“马蹄”的凹面区。分泌型的VLRs以四聚体或五聚体的形式识别、结合特异性抗原。综上所述, 无颌类和有颌类脊椎动物应用不同的抗原识别系统完成适应性免疫反应。文章对近年来无颌类脊椎动物适应性免疫系统相关分子的研究进展加以概述, 为揭示适应性免疫系统起源与进化问题提供有益参考。  相似文献   

3.
适应性免疫的起源一直是免疫学研究的关键问题.文昌鱼被认为是最接近于脊椎动物的祖先 自从被发现以来一直是研究脊椎动物起源与进化机制的经典模式动物.为了在文昌鱼中寻找适应性免疫系统的分子证据,采用金黄色葡萄球菌感染文昌鱼以调查免疫的起源.应用抑制性差减杂交(SSH)技术,通过对差减文库克隆序列的测定,共获得588个表达序列标签(EST).对这些EST进行生物信息学分析和进一步功能分类,发现了一些免疫上调基因,如免疫调控基因、凋亡相关基因、细胞黏附相关基因、转录相关基因、信号传导相关基因等,以及一些非免疫相关基因;这些基因在文昌鱼中绝大多数为首次报道.金黄色葡萄球菌差减文库的成功构建,为调查文昌鱼抗细菌感染的分子事件提供了重要线索,对于这些新发现基因的进一步研究将有助于深入了解免疫系统起源与进化的机制.  相似文献   

4.
Toll样受体是高等脊椎动物(包含无颌类到哺乳类)先天性免疫防卫系统中的必要元件,它们负责识别病原微生物,并最终引起宿主动物体内的免疫应答反应。通过研究TLR家族基因的遗传多样性是如何被保留和维持的,有利于了解动物免疫系统在病原微生物选择压力下的适应性进化。第2代测序技术的发展为TLR基因的分子进化模式提供了更丰富的资源。介绍TLR家族基因的结构及功能,着重于该受体基因在高等脊椎动物中的进化模式,从而揭示TLR家族基因在脊椎动物先天性免疫系统的适应性进化中的重要性,并进一步阐明宿主与病原微生物之间的协同进化模式。  相似文献   

5.
《遗传》2020,(9)
七鳃鳗是现存的无颌类脊椎动物代表之一,距今已有5亿多年的历史,素有"活化石"之称。古老的七鳃鳗凭借独特的功能特征和进化地位吸引了众多学者的注意:在免疫系统方面,七鳃鳗具有不同于有颌类脊椎动物的适应性免疫系统和免疫分子;基于进化地位,七鳃鳗作为一种重要的发育进化模式动物可以解析脊椎动物进化保守性和衍生的特点,七鳃鳗大脑皮层为哺乳动物大脑皮层的进化提供蓝图;在疾病研究中,七鳃鳗作为脊髓损伤功能再生和胆道闭锁病理模型取得了阶段性成果。本文结合国内外相关报道,详细介绍了七鳃鳗的免疫分子、发育进化以及生理结构的研究进展,以期为深入开展七鳃鳗在动物遗传发育和生物医学领域的研究产生积极地推动作用。  相似文献   

6.
适应性免疫一直被认为是脊椎动物特有的免疫机制,然而近年来许多研究表明 ,无脊椎动物体内也存在许多在结构或功能上与脊椎动物适应性免疫分子类似的免 疫成分. 免疫球蛋白超家族是适应性免疫的重要组成部分,本文主要综述近年来关 于水生无脊椎动物中肌联蛋白、唐氏综合症细胞黏着分子、特异性凝集素、几丁质 结合蛋白和185/133基因家族以及含有V和C结构域的蛋白等免疫球蛋白超家族成员研 究进展,这有助于深入理解无脊椎动物的免疫系统并揭示脊椎动物适应性免疫起源 与进化.  相似文献   

7.
封面说明     
《遗传》2020,(2)
正免疫系统是生命从简单到复杂进化到一定程度后形成的防御体系,用以保障个体的生存和物种的演化。无颌类脊椎动物七鳃鳗(Lampetrajaponica)虽然不具备高等脊椎动物基于MHC、TCR/BCR和Ig组成的适应性免疫系统,但通过多样性丰富的抗原识别受体分子——可变淋巴细胞受体VLRA、VLRB和VLRC形成其独特的适应性免疫系统。本期李歆等"七鳃鳗Lja-SHP2分子鉴定、重组表达及免疫学研究"一文研究了信号分子Lja-SHP2在七鳃鳗免疫应答中的作用,以期为进一步探索Lja-SHP2在VLRA~+细胞亚群免疫应答过程中所扮演的角色提供依据。封面插图展示了在受到不同病原物刺激后三类淋巴细胞亚群可能分别被激活、增殖。其中,VLRA~+和VLRC~+细胞类似于高等脊椎动物的αβ和γδT细胞,可能产生一些细胞因子作用于VLRB~+细胞,而VLRB~+细胞类似于高等脊椎动物的B细胞,可进一步分化成浆细胞样大淋巴细胞,能够表达并分泌VLRB四聚体或五聚体抗体以消灭特定病原物。  相似文献   

8.
以动物进化为主线,论述了颌的起源和由无颌脊椎动物到颌口类颌的演化过程,并对颌的结构及其它鳃弓的演化进行了概述。  相似文献   

9.
动物经过数亿年的进化直到脊椎动物阶段出现了渐为完整的免疫系统。植物在与各种病原的共进化过程中亦发展了身的防御系统。随着对植物抗病性的概念及植物防御机制的不断认识,人们发现它与动物的免疫应答有着众多的对应性,这些对应性是否表明植物的防御系统与动物的免疫系统在进化具有同一性,是否表明它们在防御反应上具有类似的机制值得深思。  相似文献   

10.
植物防御反应与动物免疫应答的比较及其对应性初探   总被引:2,自引:0,他引:2  
动物经过数亿年的进化直到脊椎动物阶段出现了渐为完整的免疫系统。植物在与各种病原的共进化过程中亦发展了自身的防御系统。随着对植物抗病性的概念及植物防御机制的不断认识,人们发现它与动物的免疫应答有着众多的对应性。这些对应性是否表明植物的防御系统与动物的免疫系统在进化上具有同一性,是否表明它们在防御反应上具有类似的机制值得深思 。  相似文献   

11.
The last two decades of study enriched greatly our knowledge of how the immune system originated and the sophisticated immune mechanisms of today's vertebrates and invertebrates developed. Even unicellular organisms possess mechanisms for pathogen destruction and self recognition. The ability to distinguish self from non-self is a prerequisite for recognition of sexual compatibility and ensuring survival. Molecules involved in these processes resemble those found in the phagocytic cells of higher organisms. Recognition of bacteria by scavenger receptors induces phagocytosis or endocytosis. The phagocytic mechanisms characterizing the amoeboid protozoans developed further during the evolution towards innate immunity. The scavenger receptor cysteine-rich domain SRCR is encoded in the genomes from the most primitive sponges to mammals. The immune system of sponges comprises signal transduction molecules which occur in higher metazoans as well. Sponges already possess recognition systems for pathogenic bacteria and fungi, based on membrane receptors (a lipopolysaccharide-interacting protein, a cell surface receptor recognizing β(1 → 3)-d-glucans of fungi). Perforin-like molecules and lysozymes are involved, among others, in defense in sponges. Reactive oxygen and nitrogen species function in the immunity of early metazoan. Genes encoding the family of reactive oxygen-generating NADPH oxidases (Noxes) are found in a variety of protists and plants. The NO synthases of cnidarians, mollusks, and chordates are conserved with respect to the mammalian NOS. The antimicrobial peptides of protozoans, amoebapores, are structural and functional analogs of the natural killer cell peptide, NK-lysin, of vertebrates. An ancestral S-type lectin has been found in sponges. Opsonizing properties of lectins and the ability to agglutinate cells justify their classification as primitive recognition molecules. Invertebrate cytokines are not homologous to those of vertebrate, and their functional convergence was presumably enabled by the general similarity of the lectin-like recognition domain three-dimensional structure. Sponges contain molecules with SCR/CCP domains that show high homology to the mammalian regulators of complement activation (RCA family). A multi-component complement system comprising at least the central molecule of the complement system, C3, Factor B, and MASP developed in the cnidarians and evolved into the multilevel cascade engaged in innate and acquired immunity of vertebrates. The adaptive immune system of mammals is also deeply rooted in the metazoan evolution. Some its precursors have been traced as deep as in sponges, namely, two classes of receptors that comprise Ig-like domains, the receptor tyrosine kinases (RTK), and the non-enzymic sponge adhesion molecules (SAM). The antibody-based immune system defined by the presence of the major histocompatibility complex (MHC), T-cell receptor (TCR), B-cell receptor (BCR) or recombination activating genes (RAGs) is known beginning from jawed fishes. However, genes closely resembling RAG1 and RAG2 have been uncovered in the genome of a see urchin. The ancestry of MHC gene remains unknown. Similarly, no homologue of the protein binding domain (PBD) in MHC molecules has been found in invertebrates. The pathway by which endogenous peptides are degraded for presentation with class I MHC molecules utilizes mechanisms similar to those involved in the normal turnover of intracellular proteins, apparently recruited to work also for the immune system. Several cDNAs coding for lysosomal enzymes, e.g., cathepsin, have been isolated from sponges. All chromosomal duplication events in the MHC region occurred after the origin of the agnathans but before the gnathostomes split from them. The V-domains of the subtype found in the receptors of T and B-cells are known from both agnathans and cephalochordates, although they do not rearrange. The rearrangement mechanism of the lymphocyte V-domains suggests its origin from a common ancestral domain existing before the divergence of the extant gnathostome classes. Activation-induced deaminase (AID) - homologous proteins have been found only in the gnathostomes. It appears thus that the adaptive immunity of vertebrates is a result of stepwise accumulation of small changes in molecules, cells and organs over almost half a billion years.  相似文献   

12.
果蝇作为一种模式昆虫,为研究昆虫和人类的先天免疫发挥了重要作用。目前对果蝇体内免疫诱导产生的抗微生物肽多基因家族在分子进化、抗菌功能的分子特征和免疫诱导表达的信号传递机制等方面的研究进展,进一步加深了人们对昆虫乃至其他动物和人类先天免疫模式的认识,为研究其他昆虫特别是作为主要农林害虫的鳞翅目昆虫的先天免疫机制发挥了重要作用。本文集中对黑腹果蝇Drosophila melanogaster抗微生物肽及其免疫模式的研究结果和最新进展进行了介绍,其中包括作者近几年的研究结果。  相似文献   

13.
棘皮动物免疫学研究进展   总被引:11,自引:0,他引:11  
棘皮动物属原始后口动物、无脊椎动物的最高等类群,它处于由无脊椎动物向脊椎动物开始分支进化的阶段.研究棘皮动物的免疫功能和作用机理,对从比较免疫学角度探讨动物免疫系统进化过程有承前启后的重要意义.因此,有必要对棘皮动物的免疫学研究进展作一个较全面的综述,并理清未来的研究热点和方向.棘皮动物与其他无脊椎动物一样具有先天性免疫系统,但未发现脊椎动物所具有的获得性免疫.其免疫应答是由参与免疫反应的效应细胞——体腔细胞和多种体液免疫因子共同介导的.比较免疫学分析表明,棘皮动物存在脊椎动物补体系统的替代途径和凝集素途径,但未发现经典途径和明确的终端途径.棘皮动物先天性免疫系统存在数量庞大的基因家族.今后应加强对未知免疫相关基因、蛋白质、信号传导途径及效应分子的研究,回答免疫系统的起源、功能和进化等问题.  相似文献   

14.
Although the capacity of cells to respond to environmental challengessuch as oxidative damage are ancient evolutionary developmentsthat have been carried through to modern higher vertebratesas "innate" immunity, the characteristic immune response ofvertebrates is a relatively recent evolutionary developmentthat is present only in jawed vertebrates. The vertebrate "combinatorial"response is defined by the presence of lymphocytes as specificantigen recognition cells and by the complete panel of antibodies,T cell receptors, and major histocompatibility complex moleculesall of which are members of the immunoglobulin family. Its emergencein evolution was an extremely rapid event (approximately 10million years) that was catalyzed by the horizontal transferof recombinase activator genes (RAG) from microbes to an ancestraljawed vertebrate. RAGs occur in jawed vertebrates, but havenot been found in invertebrates and other intermediate species.We propose that antigen recognition capacity contributed bythis novel combinatorial mechanism gave jawed vertebrates theability to recognize the entire range of potential antigenicmolecular structures, including self components and moleculesof infectious microbes not shared with vertebrates. The contrastwithin the vertebrates is striking because the most ancientextant jawed vertebrates, sharks and their kin, have the completepanoply of T-cell receptors, antibodies, MHC products and RAGgenes, whereas agnathans possess cells resembling lymphocytesbut ostensibly lack all of the molecules definitive of combinatorialimmunity. Another vertebrate innovation may have been the utilizationof nuclear receptor superfamily, in the regulation of lymphocytesand other cells of the immune lineage. Unlike, RAG, however,this superfamily occurs in all metazoans with the exceptionof sponges.  相似文献   

15.
The hindbrain is a vertebrate-specific embryonic structure of the central nervous system formed by iterative transitory units called rhombomeres (r). Rhombomeric cells are segregated by interhombomeric boundaries which are prefigured by sharp gene expression borders. The positioning of the first molecular boundary within the hindbrain (the prospective r4/r5 boundary) responds to the expression of an Iroquois (Irx) gene in the anterior (r4) and the gene vHnf1 at the posterior (r5). However, while Irx3 is expressed anteriorly in amniotes, a novel Irx gene, iro7, acts in teleosts. To assess the evolutionary history of the genes responsible for the positioning of the r4/r5 boundary in vertebrates, we have stepped outside the gnathostomes to investigate these genes in the agnathans Lethenteron japonicum and Petromyzon marinus. We identified one representative of the Hnf1 family in agnathans. Its expression pattern recapitulates that of vHnf1 and Hnf1 in higher vertebrates. Our phylogenetic analysis places this gene basal to gnathostome Hnf1 and vHnf1 genes. We propose that the duplication of an ancestral hnf1 gene present in the common ancestor of agnathans and gnathostomes gave rise to the two genes found in gnathostomes. We have also amplified 3 Irx genes in L. japonicum: LjIrxA, LjIrxC, LjIrxD. The expression pattern of LjIrxA (the agnathan Irx1/3 ortholog) resembles those of Irx3 or iro7 in gnathostomes. We propose that an Irx/hnf1 pair already present in early vertebrates positioned the r4/r5 boundary and that gene duplications occurred in these gene families after the divergence of the agnathans.  相似文献   

16.
It is generally accepted that the adaptive immune system is only present in vertebrates but not in invertebrates. Amphioxus is the most basal chordate and hence is an important reference to the evolution of the adaptive immune system. Here, a cDNA library of lipopolysaccharide-challenged amphioxus was constructed in order to identify immune genes. A total of 3024 expressed sequence tags (ESTs) were examined and 63 out of 398 annotated genes (16.3%) appeared related to immunity. Most of them encode cell adhesion molecules or signal proteins that are involved in immune responses. Although the key molecules such as TCR, MHC, Ig or VLR involved in the adaptive immune system were not identified in our database, we demonstrated the presence of histocompatibility-relevant genes and lymphocyte immune signaling-relevant genes. These findings support the statement that amphioxus presents some components that may be recruited by adaptive immune processes.  相似文献   

17.
Long before vertebrates first appeared, protists, plants andanimals had evolved diverse, effective systems of innate immunity.Ancestors of the vertebrates utilized components of the complementsystem, protease-inhibitors, metal-binding proteins, carbohydrate-bindingproteins and other plasma-born molecules as humoral agents ofdefense. In these same animals, immunocytes endowed with a repertoireof defensive behaviors expressed Toll-like receptors. They madeNADPH oxidase, superoxide dismutase and other respiratory burstenzymes to produce toxic oxygen radicals, and nitric oxide synthaseto produce nitric oxide. Antimicrobial peptides and lytic enzymeswere in their armory. Immune responses were orchestrated bycytokines. Furthermore, genes within the immunoglobulin superfamilywere expressed to meet a variety of needs possibly includingdefense. However, recombination activating genes played no role.With the acquisition of one or more transposases and the resultingcapacity to generate diverse receptors from immunoglobulin genefragments, the adaptive (lymphoid) arm of the immune systemwas born. This may have coincided with the elaboration of theneural crest. Naturally, the role of the adaptive arm was initiallysubservient to the defensive functions of the pre-existing innatearm. The strong selective advantages that stemmed from having"sharp-shooters" (cells making antigen-specific receptors) onthe defense team ensured their retention. Refined through evolution,adaptive immunity, even in mammals, remains dependent upon cellsof the innate series (e.g., dendritic cells) for signals drivingtheir functional maturation. This paper calls for some freshthinking leading to a clearer vision of the origins and co-evolutionof the two arms of modern immune systems, and suggests a possibleneural origin for the adaptive immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号