首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The (1(1)B(u)+) energy of synthetic 15-cis beta-carotene exhibits a linear dependence on (n(2)-1)/(n(2)+2) in non-polar and polar solvents; in this it is similar to (that of) all-trans beta-carotene. The point of intersection is at (n(2)-1)/(n(2)+2) = 0.3 for both isomers. The microenvironment of 15-cis beta-carotene in the Photosystem II reaction center was established as having a mean refractive index 1.473. Persistent spectral hole burning with a very broad (approximately 30 nm) hole observed around 500 nm (corresponding to an extremely short excited lifetime tau approximately 9 fs) indicates that 15-cis beta-carotene has/displays very efficient photoprotective quenching.  相似文献   

3.
Salinity commonly affects photosynthesis and crop production worldwide. Salt stress disrupts the fine balance between photosynthetic electron transport and the Calvin cycle reactions, leading to over‐reduction and excess energy within the thylakoids. The excess energy triggers reactive oxygen species (ROS) overproduction that causes photoinhibition in both photosystems (PS) I and II. However, the role of PSI photoinhibition and its physiological mechanisms for photoprotection have not yet been fully elucidated. In the present study, we analyzed the effects of 15 consecutive days of 100 mM NaCl in Jatropha curcas plants, primarily focusing on the photosynthetic electron flow at PSI level. We found that J. curcas plants have important photoprotective mechanisms to cope with the harmful effects of salinity. We show that maintaining P700 in an oxidized state is an important photoprotector mechanism, avoiding ROS burst in J. curcas exposed to salinity. In addition, upon photoinhibition of PSI, the highly reduced electron transport chain triggers a significant increase in H2O2 content which can lead to the production of hydroxyl radical by Mehler reactions in chloroplast, thereby increasing PSI photoinhibition.  相似文献   

4.
Prolonged exposure of plants to high fluxes of solar radiation as well as to other environmental stressors disturbs the balance between absorbed light energy and capacity of its photochemical utilization resulting in photoinhibition of and eventually in damage to plants. Under such circumstances, the limiting of the light absorption by the photosynthetic apparatus efficiently augments the general photoprotective mechanisms of the plant cell, such as reparation of macromolecules, elimination of reactive oxygen species, and thermal dissipation of the excessive light energy absorbed. Under stressful conditions, plants accumulate, in different cell compartments and tissue structures, pigments capable of attenuation of the radiation in the UV and visible parts of the spectrum. To the date, four principle key groups of photoprotective pigments are known: mycosporine-like amino acids, phenolic compounds (including phenolic acids, flavonols, and anthocyanins), alkaloids (betalains), and carotenoids. The accumulation of UV-absorbing compounds (mycosporine-like amino acids and phenolics in lower and higher plants, respectively) is a ubiquitous mechanism of adaptation to and protection from the damage by high fluxes of solar radiation developed by photoautotrophic organisms at the early stages of their evolution. Extrathylakoid carotenoids, betalains, and anthocyanins play an important role in long-term adaptation to the illumination conditions and in protection of plants against photodamage. A prominent feature of certain plant taxa lacking some classes of photoprotective pigments (such as anthocyanins) is their substitution by other compounds (e.g. keto-carotenoids or betalains) disparate in terms of chemical structure and subcellular localization but possessing close spectral properties.  相似文献   

5.
A purplle flowered Tradescantia hirsuticaulis is described exhibiting three classes of somatic sectors: red-only, red/blue twin spots and blue-only. The twin spots are shown to be the results of a single event since the association of red and blue cells in the same stamenis non-random and intervening purple cells occur far too infrequently to permit hairs containing both red and blue sectors to arise by sequential, facilitated, red-only and blue-only events.As in T. clone 02, deletion, as evidenced by the presence of micronuclei (chromosome fragments), is indicated to be one mechanism producing some kinds of sectors (red-only) in response to ionizing radiation.The predominant, if not exclusive, mechanism of spontaneous sectoring and important mechanism of even 60 R-induced sectoring in this T. hirsuticaulis (and by inference, in other Tradescantia) is argued to be mitotic crossing-over, since other mechanisms operating on its genotype do not allow for twin spots arising as the result of one event. This is supported by the prediction of all three types of sectors in the proper order of frequency as well as by the calculation of a “coefficientof coincidence” and a radiation response that are similar to those found for mitotic crossing-over in Drosophila.  相似文献   

6.
7.
A water-soluble chlorophyll-binding protein (WSCP) is the single known instance of a putative chlorophyll (Chl) carrier in green plants. Recently the photoprotective function of WSCP has been demonstrated by EPR measurements; the light-induced singlet-oxygen formation of Chl in the WSCP tetramer is about four times lower than that of unbound Chl. This paper describes the crystal structure of the WSCP-Chl complex purified from leaves of Lepidium virginicum (Virginia pepperweed) to clarify the mechanism of its photoprotective function. The WSCP-Chl complex is a homotetramer comprising four protein chains of 180 amino acids and four Chl molecules. At the center of the complex one hydrophobic cavity is formed in which all of the four Chl molecules are tightly packed and isolated from bulk solvent. With reference to the novel Chl-binding mode, we propose that the photoprotection mechanism may be based on the inhibition of physical contact between the Chl molecules and molecular oxygen.  相似文献   

8.
In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra. Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers that simulate the temperature and precipitation of origin of the populations (maternal phase). Each population was represented in each growth chamber. After 6 months, single young ramets of these plants were reshuffled among the growth chambers and let to grow for additional 2 months (offspring phase). The results show that transgenerational effects (i.e., maternal phase conditions) significantly modify species response to novel climates, and the direction and intensity of the response depend on the climate of origin of the plants. For traits related to recourse acquisition, the conditions of maternal phase, either alone or in interaction mainly with climate of origin, had stronger effect than the conditions of cultivation. Overall, the maternal climate interacted more intensively with the climate of origin than with the offspring climate. The direction of the effect of the maternal climate was of different directions and intensities depending on plant origin and trait studied. The data demonstrated strong significant effects of conditions during maternal phase on species response to novel climates. These transgenerational affects were, however, not adaptive. Still, transgenerational plasticity may be an important driver of species response to novel conditions across clonal generations. These effects thus need to be carefully considered in future studies exploring species response to novel climates. This will also have strong effects on species performance under increasingly variable climates expected to occur with the climate change.  相似文献   

9.
The role of phytoplankton photosynthesis in global biogeochemical cycles   总被引:4,自引:0,他引:4  
Phytoplankton biomass in the world's oceans amounts to only 1–2% of the total global plant carbon, yet these organisms fix between 30 and 50 billion metric tons of carbon annually, which is about 40% of the total. On geological time scales there is profound evidence of the importance of phytoplankton photosynthesis in biogeochemical cycles. It is generally assumed that present phytoplankton productivity is in a quasi steady-state (on the time scale of decades). However, in a global context, the stability of oceanic photosynthetic processes is dependent on the physical circulation of the upper ocean and is therefore strongly influenced by the atmosphere. The net flux of atmospheric radiation is critical to determining the depth of the upper mixed layer and the vertical fluxes of nutrients. These latter two parameters are keys to determining the intensity, and spatial and temporal distributions of phytoplankton blooms. Atmospheric radiation budgets are not in steady-state. Driven largely by anthropogenic activities in the 20th century, increased levels of IR- absorbing gases such as CO2, CH4 and CFC's and NOx will potentially increase atmospheric temperatures on a global scale. The atmospheric radiation budget can affect phytoplankton photosynthesis directly and indirectly. Increased temperature differences between the continents and oceans have been implicated in higher wind stresses at the ocean margins. Increased wind speeds can lead to higher nutrient fluxes. Throughout most of the central oceans, nitrate concentrations are sub-micromolar and there is strong evidence that the quantum efficiency of Photosystem II is impaired by nutrient stress. Higher nutrient fluxes would lead to both an increase in phytoplankton biomass and higher biomass-specific rates of carbon fixation. However, in the center of the ocean gyres, increased radiative heating could reduce the vertical flux of nutrients to the euphotic zone, and hence lead to a reduction in phytoplankton carbon fixation. Increased desertification in terrestrial ecosystems can lead to increased aeolean loadings of essential micronutrients, such as iron. An increased flux of aeolean micronutrients could fertilize nutrient-replete areas of the open ocean with limiting trace elements, thereby stimulating photosynthetic rates. The factors which limit phytoplankton biomass and photosynthesis are discussed and examined with regard to potential changes in the Earth climate system which can lead the oceans away from steady-state. While it is difficult to confidently deduce changes in either phytoplankton biomass or photosynthetic rates on decadal time scales, time-series analysis of ocean transparency data suggest long-term trends have occurred in the North Pacific Ocean in the 20th century. However, calculations of net carbon uptake by the oceans resulting from phytoplankton photosynthesis suggest that without a supply of nutrients external to the ocean, carbon fixation in the open ocean is not presently a significant sink for excess atmospheric CO2.The submitted paper has been authored under Contract No. DE-AC02-76H00016 with the US Department of Energy. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.  相似文献   

10.
11.
Li Y  Walton DC 《Plant physiology》1990,92(3):551-559
The leaves of dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of violaxanthin, 9′-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but not stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximide did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an 18O2-containing atmosphere resulted in the synthesis of ABA with levels of 18O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.  相似文献   

12.
13.
Light-driven violaxanthin deepoxidation was measured in isolated pea (Pisum sativum) chloroplasts without ATP synthesis (basal conditions) and with ATP synthesis (coupled conditions). Thylakoids stored in high salt (HS) or low salt (LS) storage medium were tested. In previous experiments, HS thylakoids and LS thylakoids were related to delocalized and localized proton coupling, respectively.Light-driven deepoxidase activity was compared to the pH dependence of deepoxidase activity established in dark reactions. At an external pH of 8, light-driven deepoxidation indicated effective pH values close to pH 6 for all reaction conditions. Parallel to deepoxidation, the thylakoid lumen pH was estimated by the fluorescent dye pyranine.In LS thylakoids under coupled conditions the lumen pH did not drop below pH 6.7. At pH 6.7, no deepoxidase activity is expected based on the pH dependence of enzyme activity. The results suggest that deepoxidation activity is controlled by the pH in sequestered membrane domains, which, under localized proton coupling, can be maintained at pH 6.0 when the lumen pH is far above pH 6.0. The extent of violaxanthin conversion (availability), however, appeared to be regulated by lumenal pH. Dithiothreitol-sensitive nonphotochemical quenching of chlorophyll fluorescence was dependent on zeaxanthin and not related to lumenal pH. Thus, zeaxanthin-dependent quenching[mdash]known to be pH dependent[mdash]appeared to be triggered by the pH of localized membrane domains.  相似文献   

14.

Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10?5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

  相似文献   

15.
Homeostasis in living cells refers to the steady state of internal, physical, and chemical conditions. It is sustained by self-regulation of the dynamic cellular system. To gain insight into the homeostatic mechanisms that maintain cytosolic nutrient concentrations in plant cells within a homeostatic range, we performed computational cell biology experiments. We mathematically modeled membrane transporter systems and simulated their dynamics. Detailed analyses of ‘what-if’ scenarios demonstrated that a single transporter type for a nutrient, irrespective of whether it is a channel or a cotransporter, is not sufficient to calibrate a desired cytosolic concentration. A cell cannot flexibly react to different external conditions. Rather, at least two different transporter types for the same nutrient, which are energized differently, are required. The gain of flexibility in adjusting a cytosolic concentration was accompanied by the establishment of energy-consuming cycles at the membrane, suggesting that these putatively “futile” cycles are not as futile as they appear. Accounting for the complex interplay of transporter networks at the cellular level may help design strategies for increasing nutrient use efficiency of crop plants.

First principles of membrane transport explain why maintaining a constant cytosolic nutrient concentration is often accompanied by the “futile” cycling of the nutrient across the membrane.  相似文献   

16.
Efficient photosynthesis is of fundamental importance for plant survival and fitness. However, in oxygenic photosynthesis, the complex apparatus responsible for the conversion of light into chemical energy is susceptible to photodamage. Oxygenic photosynthetic organisms have therefore evolved several protective mechanisms to deal with light energy. Rapidly inducible non-photochemical quenching (NPQ) is a short-term response by which plants and eukaryotic algae dissipate excitation energy as heat. This review focuses on recent advances in the elucidation of the molecular mechanisms underlying this protective quenching pathway in higher plants.  相似文献   

17.
18.
19.
Species distribution models (SDMs) that employ climatic variables are widely used to predict potential distribution of invasive species. However, climatic variables derived from climate datasets do not account for anthropogenic influences on microclimate. Irrigation is a major anthropogenic activity that influences microclimate conditions and alters the distribution of species in anthropogenic landuses. SDM-based studies appear to ignore the effects of irrigation on microclimatic conditions. This study incorporated irrigation as a correction to precipitation data, to improve the predictive capacity of SDM. As a case study, we examined a SDM of Wasmannia auropunctata, an invasive species that originates in South and Central America, which has invaded tropical and subtropical regions around the world. The potential distribution of W. auropunctata was predicted using Maxent. The model was built based on climatic variables and species records from non-irrigated sites in the native range and then projected on a global scale. Invasive species records were used to evaluate the performance of the model. Precipitation-related variables were modified to approximate actual water input in irrigated areas. Precipitation correction relied on an estimate of irrigation inputs. The model with irrigation correction performed better than the corresponding model without correction, on a global scale and when it was examined in five different geographical regions of the model. These results demonstrate the importance of irrigation correction for assessing the distribution of W. auropunctata in various geographical regions. Accounting for irrigation is expected to improve SDMs for a variety of species.  相似文献   

20.
Leaf area partitioning as an important factor in growth   总被引:13,自引:2,他引:13       下载免费PDF全文
Despite continuing efforts to correlate unit area rates of photosynthesis of crop varieties with growth rates, there has been little or no success. It is reasonable to assume that partitioning of photosynthate into new leaf area is an important component of growth. Accordingly, an expression was developed to measure leaf area partitioning. Using growth analysis techniques, relative growth rates were compared to net assimilation rates, partitioning of daily weight gain into new leaf area, and partitioning of daily weight gain into new leaf weight of nine species grown in growth chambers under three temperature regimes. Day/night temperatures of 21/10, 32/21, and 38/27 C caused large differences in relative growth rates. Relative growth rates were closely correlated with leaf area partitioning in seven of the nine species, but were inversely correlated with leaf weight partitioning for six of the nine species. Relative growth rates were poorly correlated with net assimilation rates for five of the nine species. The product of net assimilation rate times leaf area partitioning is shown to be equal to the relative leaf area expansion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号