首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The discovery that certain microorganisms, living within a marine environment, can actually degrade components of oil, has made possible the utilization of biological methods for the treatment of oil spills. A biosurfactant accelerates the process of degradation of pollutant composites. The objective of this work was to study the bioremediation in situ of a diesel oil spill by utilizing a biosurfactant produced through fermentation and then compare it with chemical remediation. The quantification and identification of hydrocarbons were carried out by the process of gas chromatography. The soil indigenous microorganisms were monitored. The experiment with biosurfactant reached reductions of 99% of the aliphatic hydrocarbons, while that of the chemical disperser experiment reached a maximum of 90% reduction in 180 days. In 15 days the biosurfactant removed 77% of the aliphatic hydrocarbons, the diesel oil experiment 8.7% and the chemical disperser only 5%. The biosurfactant was 99% effective for the removal of aromatic polycyclic hydrocarbons, up to 3 rings.  相似文献   

2.
    
A proof‐of‐concept study to evaluate the biological removal of hydrocarbons (naphthalene, n‐hexadecane, and fuel oil #2) from contaminated wood (Southern yellow pine) was conducted using 14C‐labeled tracers and gas chromatography. Contaminated wood was brought in contact with n‐hexadecane‐degrading Pseudomonas aeruginosa PG201 or naphthalene degrading environmental isolates by the application either on mineral medium agar or filter paper containing a previously grown biomass (“overlay” technique). The experiments showed a significant acceleration of naphthalene removal by biomass. Due to biodegradation combined with evaporation, naphthalene was nearly completely removed (up to 90–98 %) in 4–8 days from freshly contaminated 6 mm‐ and 17 mm‐thick wood samples. The removal of a less volatile hydrocarbon, n‐hexadecane, was less efficient, at 40–60% in 20–40 days, with the only variable significantly affecting this pollutant's removal rate being the moisture content of the medium. Biodegradation experiments with standard heating fuel oil #2 (a representative real‐world contaminant) resulted in significant removal of light hydrocarbons (C10–C16), i.e., more mobile/volatile substrates, in 3 weeks (up to 70 %) whereas heavier hydrocarbons (C17–C19) were less affected. Pollutant mobility in both wood and aqueous media was shown to be the crucial factor affecting the removal efficiency. These results point toward a promising technique to reclaim wooden structures contaminated with volatile and semi‐volatile chemicals.  相似文献   

3.
The susceptibility to bioremediation of the hydrocarbons contained in a waste from crude oil extraction was examined. Laboratory scale batch reactors were inoculated with indigenous bacteria and biodegradation was followed for 45 days. The total hydrocarbon content was reduced to 70% of its initial value at the end of the experiments. Saturated and aromatic hydrocarbons were the most readily degraded fractions with, respectively, 70% and 60% of the fraction remaining at the end of the experiment. A minor degradation was observed in the resins fraction (20%), whereas the asphaltenes fraction remained almost constant.The substrate preferences of the natural population towards various fractions of the crude oil were determined by both the length of the lag phase and the slope of the exponential growth in a mineral salt-base medium containing either of the different hydrocarbon fraction as the sole source of carbon. The highest consumption rate for every fraction during the time course experiments was in agreement with the shortest lag phase and the greatest exponential growth slope in the corresponding selective media, indicating changes in the population composition.  相似文献   

4.
Two new fungal strains, namely Paecilomyces variotii and Exophiala oligosperma, were isolated on toluene as the sole carbon and energy source, mineralizing the substrate into carbon dioxide. Fungal strains isolated so far on such a pollutant and completely degrading it are very scarce. Both fungi degraded the pollutant over the pH range 3.9–6.9 and temperature range 23–40°C, but E. oligosperma was barely active at the highest temperature of 40°C. Fungal growth on alkylbenzenes at 40°C has not been reported before. Since the activity of the strains gradually decreased at pH values below 4.0, the use of nitrate instead of ammonium was tested. In the presence of toluene, nitrate was a suitable nitrogen source for the Exophiala strain, but not for the Paecilomyces strain. Nitrate rather than ammonium allowed the maintenance of a more constant pH.  相似文献   

5.
Compost based material has been proposed for use as media for biofiltration for environmental restoration in many areas to remediate contaminated water and soil. The objective of this project was to develop techniques to produce compost products for nitrate removal in storm water biofiltration applications, from typical solid waste materials. Compost products were manufactured from different feedstocks and evaluated for their nitrate removal efficiencies. Three different compost products manufactured from varying feedstock amounts of wood chips and grass clippings, along with some dry compost material from the City of Brownsville Municipal Landfill Facility (BMLF), were evaluated using column studies. Indicators of the compost product’s quality included moisture % content, pH, and conductivity measurements. The columns were loaded with water containing at least 13.5 mg/L nitrate–nitrogen and effluent water from the columns was tested to determine the nitrate reduction for the different products. All of the manufactured compost products and the BMLF material removed some nitrate. The project demonstrated that compost product materials can be effectively used for some nitrate removal for surface water quality improvement and that compost product feedstocks and blends can influence the materials capability for nitrate removal.  相似文献   

6.
石油污染土壤堆制微生物降解研究   总被引:11,自引:0,他引:11  
采用异位生物修复技术堆式堆制处理方法 ,对辽河油田原油污染土壤进行了生物修复处理研究 .处理工程设 4个处理料堆单元 ,每个处理单元长 118.5cm ,宽 6 5 .5cm ,高 12 .5cm .研究结果表明 ,当进行处理的石油污染土壤中石油烃总量为 5 .2 2 g·10 0 g-1土时 ,利用黄孢原毛平革菌 (Phanerochaetechrysospori um) ,经过 5 5d的运行 ,石油烃总量去除率达 5 4.2 % .堆制处理中影响污染土壤石油烃总量生物降解的主要变化因子为污染土壤的O2 和CO2 含量、降解石油烃微生物的数量、污染土壤pH的变化 .通过监测这些数据的变化 ,可直接反映该工程的处理石油污染土壤的效果 .本处理工程采用定期通风措施 ,操作简单、运行费用低廉 ,为石油污染土壤生物修复实用化提供了一种简单易行的污染土壤清洁技术 .  相似文献   

7.
Bioventing soils contaminated with petroleum hydrocarbons   总被引:4,自引:0,他引:4  
Summary Bioventing combines the capabilities of soil venting and enhanced bioremediation to cost-effectively remove light and middle distillate hydrocarbons from vadose zone soils and the groundwater table. Soil venting removes the more volatile fuel components from unsaturated soil and promotes aerobic biodegradation by driving large volumes of air into the subsurface. In theory, air is several thousand times more effective than water in penetrating and aerating fuel-saturated and low permeability soil horizons. Aerobic microbial degradation can mitigate both residual and vapor phase hydrocarbon concentrations. Soil venting is being evaluated at a number of U.S. military sites contaminated with middle distillate fuels to determine its potential to stimulate in situ aerobic biodegradation and to develop techniques to promote in situ vapor phase degradation. In situ respirometric evaluations and field pilot studies at sites with varying soil conditions indicate that bioventing is a cost-effective method to treat soils contaminated with jet fuels and diesel.  相似文献   

8.
Rhinocladiella similis biodegraded volatile organic compounds (VOCs) of different polarity in gas-phase biofilters. Elimination capacities, (EC) of 74 ghexane m−3 h−1, 230 gethanol m−3 h−1, 85 gtoluene m−3 h−1 and 30 gphenol m−3 h−1 were obtained. EC values correlated with the solubility of the VOCs. R. similis grown with n-hexane or ethanol in biofilters packed with Perlite showed that the surface hydrophobicity was higher with n-hexane than ethanol. The hydrophobin-like proteins extracted from the mycelium produced with n-hexane (15 kDa) were different from those in the ethanol biofilter (8.5 kDa and 7 kDa).  相似文献   

9.
  总被引:5,自引:0,他引:5  
  相似文献   

10.
  总被引:1,自引:0,他引:1  
An innovative, coir-pith-based, filter bed for degrading vapor phase toluene in a gas biofilter over 160 days without any external nutrient supply is reported in this study. Indigenous microflora present in the coir pith as well as in the aerobic sludge added at the start-up stage metabolized the toluene, and correspondingly, CO2 was produced in the biofilter. Inlet toluene concentration in the range of 0.75 to 2.63 g/m3 was supplied to the biofilter in short acclimation periods. The maximum elimination capacity achieved was 96.75 g/m3·h at 120.72 g/m3·h loading where around 60% was recovered as CO2. The filter bed maintained a stable low-pressure drop (0–4 mm H2O), neutral pH range (6.5–7.5), and moisture content of 60–80% (w/w) throughout the period. In addition to toluene-degrading microbial community, a grazing fauna including rotifer, bacteriovoric nematode, tardigrade, and fly larvae were also present in the filter bed. The overall performance of the biofilter bed in pollutant removal and sustainability was analyzed in this study.  相似文献   

11.
    
Biodegradation of styrene in a biological trickling filter on lava stones was investigated, firstly, with the addition of silicon oil and, secondly, without the addition of silicon oil. After 400 days of trial runs the experimental results revealed that the biodegradation capacity of styrene in the trickling filter reached 537 g/m3 × h with a degradation yield of 96.8 % at an air inlet concentration of 1.06 g/m3 of styrene and a space velocity of 157 m/h in the presence of silicon oil. A removal of styrene up to 2.9 kg/m3 × h was obtained when the styrene input concentration in a constant inlet air flow of 0.78 m3/h was increased up to 6.6 g/m3. Interestingly, it was observed that after a period of 400 days, the seven dominant strains were completely different from those present in the inoculum. Surprisingly, this population was able to grow in an aqueous liquid phase without silicon oil on a styrene concentration of 45.5 g/L. In the biological trickling filter with lava stones but without silicon oil, the biodegradation capacity of styrene was 464 g/m3 × h with a removal yield of 98.3 % at an air inlet concentration of 1.03 g/m3 of styrene and a space velocity of 137 m/h. As in the presence of silicon oil, a removal of styrene of up to 2.375 kg/m3 × h was achieved when the air flow rate was kept constant and the styrene input concentration was increased. These experiments suggested that the biphasic medium could be very efficiently used for the selection of adapted strains for the removal of insoluble or poorly soluble organic compounds, rather than being used for long‐term degradation under industrial conditions.  相似文献   

12.
The removal of dimethyl sulfide (DMS) from industrial gas streams has received a high priority due to its very low odorous threshold value and relatively low biodegradability compared to other reduced sulfur compounds. A variety of bacteria that utilize DMS as a carbon/energy source have been studied and the degradation pathway elucidated. However, to date, there have been few reports on the industrial application of such bacteria inoculated into a bioreactor for DMS treatment. An additional problem of such systems is the accumulation of intermediate metabolites that strongly impact on DMS removal by the microbe. The results reported here were obtained using a bioreactor inoculated with the H(2)S-degrader Pseudomonas putida and the DMS-degrader Microbacterium sp. NTUT26 to facilitate removal of metabolic intermediates and DMS. This bioreactor performed well (1.71 g-S/day/kg-dry packing material) in terms of DMS gas removal, based on an evaluation of the apparent kinetics and maximal removal capacity of the system. Under varying conditions (changes in start-up, inlet loading, shutdown, and re-start), the bioreactor inoculated with Microbacterium sp. NTUT26 and P. putida enhanced removal of high concentrations of DMS. Our results suggest that this type of bioreactor system has significant potential applications in treating (industrial) DMS gas streams.  相似文献   

13.
生物净化废气技术的进展   总被引:2,自引:0,他引:2       下载免费PDF全文
生物技术以其能在常温常压下将污染物降解为无毒无害的简单物质、无二次污染、运行费用低等优点,目前已应用于许多废气处理,并已经形成了一套关于可生化气体的净化原理和工业应用经验的重要体系。文中介绍了生物技术处理污水处理厂、养殖场排放的恶臭气体、工厂排放的硫化物的发展,并分析了解决生物膜堵塞的途径,以及分子生物学在废气生物处理中的应用研究,提出生物净化废气技术的发展方向,期待该技术在国内能得到更广泛的应用。  相似文献   

14.
生物技术以其能在常温常压下将污染物降解为无毒无害的简单物质、无二次污染、运行费用低等优点,目前已应用于许多废气处理,并已经形成了一套关于可生化气体的净化原理和工业应用经验的重要体系。文中介绍了生物技术处理污水处理厂、养殖场排放的恶臭气体、工厂排放的硫化物的发展,并分析了解决生物膜堵塞的途径,以及分子生物学在废气生物处理中的应用研究,提出生物净化废气技术的发展方向,期待该技术在国内能得到更广泛的应用。  相似文献   

15.
The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants [benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)]. Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 105 CFU mL−1.  相似文献   

16.
The performance and stability of a two-phase partitioning bioscrubber (TPPB) containing 33% (vol.) n-hexadecane as an immiscible phase was investigated during 30 days of continuous gaseous benzene treatment. Elimination capacities of 141 ± 12 g/m3 h were achieved by Achromobacter xylosoxidans Y234 while maintaining >99% removal throughout. A new steady-state operating strategy that limits excessive biomass production by directing substrate consumption to maintenance energy has eliminated the requirement for frequent exchange of liquid contents. Simplifying the operating protocols in this manner has dramatically reduced material costs and rendered the TPPB operational requirements as more comparable (in terms of frequency of required operator inputs) with other vapor-phase bioreactors. The practicality of the proposed simplification to the operating protocol was confirmed by demonstrating that intermediate metabolites were not accumulating in the TPPB, inorganic nutrient requirements were readily predictable, and that high culture viability could be sustained for prolonged cell retention times (30 days).  相似文献   

17.
海水养殖环境生物修复研究进展   总被引:2,自引:0,他引:2  
着重分析了微生物,大型藻类及其他生物在海水养殖环境中的生物修复作用,原理,国内外最新研究进展,存在问题以及发展前景。  相似文献   

18.
The evaluation of two waste-derived materials used to treat compost leachate by biofiltration is described in this paper. Nine biofilters were constructed using 240 l, high density polyethylene containers. Three containers were filled without compaction with 200l of each of three types of filter media. Waste-derived filter media (compost and oversize) were compared to a mineral control (granite chips). The filters were fed with compost leachate from a typical green waste composting facility at hydraulic loading rates ranging from 0.05 m3/m3/day to 0.5 m3/m3/day over a period of twelve months. The oversize medium emerged as the most effective demonstrating characteristics of consistency of effluent quality and resilience to stress. The oversize medium produced an effluent of <10mg/l ammoniacal nitrogen on >95% of sampling occasions. The organic component of compost leachate was dominated by compounds that proved to be recalcitrant to biodegradation. The solids content of the treated effluent remained too high to be acceptable for direct discharge to a watercourse without further treatment and if discharge to a watercourse is to be considered, a polishing stage (e.g., reed bed) able to remove solids and dampen occasional peaks of ammoniacal nitrogen should be employed.  相似文献   

19.
生物过滤方法在废气净化中具有费用低和环保的特点, 因而成为一种应用前景良好的空气污染控制技术。本文综述了不同生物过滤反应器的特点, 详细分析了应当在生物过滤过程中合理控制的关键参数, 并展望了今后的研究热点。  相似文献   

20.
Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500–6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98–35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO2 removal using these systems is $90–$910 ($2,070–$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO2 credits is increased, can also be economically attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号