首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Methanosarcina barkeri inserts pyrrolysine (Pyl) at an in-frame UAG codon in its monomethylamine methyltransferase gene. Pyrrolysyl-tRNA synthetase acylates Pyl onto tRNAPyl, the amber suppressor pyrrolysine Pyl tRNA. Here we show that M. barkeri Fusaro tRNAPyl can be misacylated with serine by the M. barkeri bacterial-type seryl-tRNA synthetase in vitro and in vivo in Escherichia coli. Compared to the M. barkeri Fusaro tRNA, the M. barkeri MS tRNAPyl contains two base changes; a G3:U70 pair, the known identity element for E. coli alanyl-tRNA synthetase (AlaRS). While M. barkeri MS tRNAPyl cannot be alanylated by E. coli AlaRS, mutation of the MS tRNAPyl A4:U69 pair into C4:G69 allows aminoacylation by E. coli AlaRS both in vitro and in vivo.  相似文献   

2.
We report the crystal structure of a termination complex containing release factor RF1 bound to the 70S ribosome in response to an amber (UAG) codon at 3.6‐Å resolution. The amber codon is recognized in the 30S subunit‐decoding centre directly by conserved elements of domain 2 of RF1, including T186 of the PVT motif. Together with earlier structures, the mechanisms of recognition of all three stop codons by release factors RF1 and RF2 can now be described. Our structure confirms that the backbone amide of Q230 of the universally conserved GGQ motif is positioned to contribute directly to the catalysis of the peptidyl‐tRNA hydrolysis reaction through stabilization of the leaving group and/or transition state. We also observe synthetic‐negative interactions between mutations in the switch loop of RF1 and in helix 69 of 23S rRNA, revealing that these structural features interact functionally in the termination process. These findings are consistent with our proposal that structural rearrangements of RF1 and RF2 are critical to accurate translation termination.  相似文献   

3.
It is known from experiments with bacteria and eukaryotic viruses that readthrough of termination codons located within the open reading frame (ORF) of mRNAs depends on the availability of suppressor tRNA(s) and the efficiency of termination in cells. Consequently, the yield of readthrough products can be used as a measure of the activity of polypeptide chain release factor(s) (RF), key components of the translation termination machinery. Readthrough of the UAG codon located at the end of the ORF encoding the coat protein of beet necrotic yellow vein furovirus is required for virus replication. Constructs harbouring this suppressible UAG codon and derivatives containing a UGA or UAA codon in place of the UAG codon have been used in translation experiments in vitro in the absence or presence of human suppressor tRNAs. Readthrough can be virtually abolished by addition of bacterially-expressed eukaryotic RF1 (eRF1). Thus, eRF1 is functional towards all three termination codons located in a natural mRNA and efficiently competes in vitro with endogenous and exogenous suppressor tRNA(s) at the ribosomal A site. These results are consistent with a crucial role of eRF1 in translation termination and forms the essence of an in vitro assay for RF activity based on the abolishment of readthrough by eRF1.  相似文献   

4.
The RNA of bacteriophage MS2 codes for three viral proteins: the coat protein, the A protein and the replicase. Upon infection of various amber suppressor strains of Escherichia coli, we found a fourth viral protein, the synthesis of which was specifically dependent on the presence of an amber suppressor gene. It is shown that this polypeptide is formed by reading through the natural termination signal of the A protein cistron. This cistron therefore terminates with the nonsense codon UAG. The observed prolongation accounts for the addition of some 30 amino acids. Unlike the normal A protein, the longer polypeptide is probably not incorporated into mature phage particles.  相似文献   

5.
Cloacin DF12 cleavage of Escherichia coli f[3H]MettRNA-AUG-ribosome complexes affects this substrate for in vitro peptide chain termination. Codon-directed release factors' (RF) 1 and 2 release of f[3H]methionine is inhibited by cloacin. Since cloacin inhibits RF1 and -2 binding to ribosomes but not RF-directed f[3H]methionine release from f[3H]met-tRNA-AUG-ribosome complexes when reactions contain 20% ethanol, we conclude that cloacin DF 13 inhibits formation of the termination codon recognition complex. Thus, cleavage of the 3'-OH 49-nucleotide sequence of the 16 S rRNA perturbs the codon-directed binding of RF to ribosomes.  相似文献   

6.
T Mizutani  T Hitaka 《FEBS letters》1988,226(2):227-231
Animal natural suppressor tRNA did not affect the release reaction of reticulocyte release factor (RF) at the same concentration of tRNA (both estimated as being present at a similar level of 3-5 X 10(-8) M in vivo); even at a 10-fold greater concentration the tRNA did not prevent the release reaction with RF. In order to confirm this result, the Ka values were determined. The Ka value between RF and UGA was 1.26 X 10(6) M-1 and that between the suppressor tRNA and UGA amounted to 8 X 10(3) M-1. This result showed that RF had a 150-fold stronger affinity than suppressor tRNA for the opal termination codon. Incorporation of phosphoserine into phosphoprotein via phosphoseryl-tRNA was inhibited by addition of RF to the reaction mixture. These results suggest that animal natural suppressor tRNA in the normal state does not perform its suppressor function, except in special cases where mRNA has the context structure near the opal termination codon (UGA).  相似文献   

7.
A cell-free protein-synthesizing system, containing an S-100 fraction from yeast, ribosomal subunits from Krebs ascites cells, and ribosome initiation factors from rabbit reticulocytes, translates yeast, adenovirus, and rabbit globin messenger RNAs and the RNA from bacteriophage Qβ. An amber mutation in the Qβ synthetase gene is suppressed in vitro if the S-100 fraction is from yeast strains carrying amber suppressor mutations. Suppressor SUP6-2 gives 16% suppression, and the recessive lethal suppressor RL-1 gives 50% suppression. Extracts from strain FM6, which has the ochre suppressor SUP4-1, give a longer protein product from the normal synthetase gene of Qβ with an efficiency of 63%. This implies that UAA is the terminator for the synthetase gene, and that synthesis of this read through protein can be used as an assay for ochre suppression. Suppression in each of these cases is mediated by tRNA, since purified tRNA is the only fraction from suppressing strains that is required in an otherwise nonsuppressing cell-free system.  相似文献   

8.
An in vivo translation assay system has been designed to measure, in one and the same assay, the three alternatives for a ribosome poised at a stop codon (termination, read-through and frameshift). A quantitative analysis of the competition has been done in the presence and absence of release factor (RF) mutants, nonsense suppressors and an upstream Shine-Dalgarno-like sequence. The ribosomal +1 frameshift product is measurable when the stop codon is decoded by wild-type or mutant RF (prf A1 or prf B2) and also in the presence of competing suppressor tRNAs. Frameshift frequency appears to be influenced by RF activity. The amount of frameshift product decreases in the presence of competing suppressor tRNAs, however, this decrease is not in proportion to the corresponding increase in the suppression product. Instead, there is an increase in the total amount of protein expressed from the gene, perhaps due to the purging of queued ribosomes. Mutated RFs reduce the total output of the reporter gene by reducing the amount of all three protein products. The nascent peptide has earlier been shown to influence the translation termination process by interacting with the RFs. At 42 degrees C in a temperature-sensitive RF mutant strain, protein measurements indicate that the nascent peptide seems to influence the binding efficiencies of the RFs.  相似文献   

9.
Cloning of the Escherichia coli release factor 2 gene.   总被引:9,自引:5,他引:4       下载免费PDF全文
The protein release factor 2 (RF2) participates in Escherichia coli polypeptide chain termination with codon specificity (UAA or UGA). A colicin E1 recombinant identified in the Carbon and Clarke E. coli bank contains the protein release factor 2 gene. A 1.7-kilobase E. coli fragment has been subcloned into the plasmid pUC9 vector. Bacterial cells, containing the plasmid recombinant, produce elevated levels of protein release factor 2 as detected by an immune precipitation assay and in vitro measurement of UGA-directed peptide chain termination and [3H]UGA codon recognition.  相似文献   

10.
Rates of ribosomal selection of both release factor 1 (RF1) and a suppressor tRNA (Su7C33) were studied at an amber codon at which the 3' neighbor was permuted. Rates of RF1 selection vary 2.6-fold among contexts. The 3' neighbor-dependent variation of RF1 action correlates very strongly with the non-random frequencies of 3' neighbors at UAG terminators (r = 0.97), which argues that the rate of RF1 selection is an important determinant 3' neighbor choice at termination codons. The data are consistent with a model for RF1 selection in which RF1 makes a specific contact(s) to the 3' neighbor and that this interaction is most favorable to uridylic acid. Measured rates of Su7C33 selection vary fivefold among 3' contexts. We also develop a method to calculate rates of selection for other suppressors, based on the assumption that rates of RF1 selection at each 3' context can be generalized to other sites that have the same 3' neighbor. Rates for various suppressors appear to vary from two- to fivefold depending on the 3' neighbor. Generally, the rate of selection of suppressors at different contexts correlates with the stacking strength of the 3' neighbor as measured in vitro. The two- to fivefold range of 3' neighbor effects on rate of aminoacyl-tRNA selection is greater than that previously observed within sets of codons read by the same tRNA. It is suggested that the choice of codons to achieve favorable contexts may be more important than the choice of a common codon at some message sites.  相似文献   

11.
12.
Anderson JC  Schultz PG 《Biochemistry》2003,42(32):9598-9608
Recently, it has been shown that an amber suppressor tRNA/aminoacyl-tRNA synthetase pair derived from the tyrosyl-tRNA synthetase of Methanococcus jannaschii can be used to genetically encode unnatural amino acids in response to the amber nonsense codon, TAG. However, we have been unable to modify this pair to decode either the opal nonsense codon, TGA, or the four-base codon, AGGA, limiting us to a 21 amino acid code. To overcome this limitation, we have adapted a leucyl-tRNA synthetase from Methanobacterium thermoautotrophicum and leucyl tRNA derived from Halobacterium sp. NRC-1 as an orthogonal tRNA-synthetase pair in Escherichia coli to decode amber (TAG), opal (TGA), and four-base (AGGA) codons. To improve the efficiency and selectivity of the suppressor tRNA, extensive mutagenesis was performed on the anticodon loop and acceptor stem. The two most significant criteria required for an efficient amber orthogonal suppressor tRNA are a CU(X)XXXAA anticodon loop and the lack of noncanonical or mismatched base pairs in the stem regions. These changes afford only weak suppression of TGA and AGGA. However, this information together with an analysis of sequence similarity of multiple native archaeal tRNA sequences led to efficient, orthogonal suppressors of opal codons and the four-base codon, AGGA. Ultimately, it should be possible to use these additional orthogonal pairs to genetically incorporate multiple unnatural amino acids into proteins.  相似文献   

13.
We describe a detailed protocol for incorporating non-natural amino acids, 3-iodo-L-tyrosine (IY) and p-benzoyl-L-phenylalanine (pBpa), into proteins in response to the amber codon (the UAG stop codon) in mammalian cells. These amino acids, IY and pBpa, are applicable for structure determination and the analysis of a network of protein-protein interactions, respectively. This method involves (i) the mutagenesis of the gene encoding the protein of interest to create an amber codon at the desired site, (ii) the expression in mammalian cells of the bacterial pair of an amber suppressor tRNA and an aminoacyl-tRNA synthetase specific to IY or pBpa and (iii) the supplementation of the growth medium with these amino acids. The amber mutant gene, together with these bacterial tRNA and synthetase genes, is introduced into mammalian cells. Culturing these cells for 16-40 h allows the expression of the full-length product from the mutant gene, which contains the non-natural amino acid at the introduced amber position. This method is implemented using the conventional tools for molecular biology and treating cultured mammalian cells. This protocol takes 5-6 d for plasmid construction and 3-4 d for incorporating the non-natural amino acids into proteins.  相似文献   

14.
In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1-mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from approximately 20% to >60% on a single amber codon and from <1% to >20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo.  相似文献   

15.
The 5' context of 671 Escherichia coli stop codons UGA and UAA has been compared with the context of stop-like codons (UAC, UAU and CAA for UAA; UGG, UGC, UGU and CGA for UGA). We have observed highly significant deviations from the expected nucleotide distribution: adenine is over-represented whereas pyrimidines are under-represented in position -2 upstream from UAA. Uridine is over-represented in position -3 upstream from UGA. Lysine codons are preferable immediately prior to UAA. A complete set of codons for serine and the phenylalanine UUC codon are preferable immediately 5' to UGA. This non-random codon distribution before stop codons could be considered as a molecular device for modulation of translation termination. We have found that certain fragment of E. coli release factor 2 (RF2) (amino acids 93-114) is similar to the amino acid sequences of seryl-tRNA synthetase (positions 10-19 and 80-93) and of beta (small) subunit (positions 72-94) of phenylalanyl-tRNA synthetase from E. coli. Three-dimensional structure of E. coli seryl-tRNA synthetase is known [1]: Its N-terminus represents an antiparallel alpha-helical coiled-coil domain and contains a region homologous to RF2. On the basis of the above-mentioned results we assume that a specific interaction between RF2 and the last peptidyl-tRNA(Ser/Phe) occurs during polypeptide chain termination in prokaryotic ribosomes.  相似文献   

16.
Two modes of amber codon read-through in vitro   总被引:1,自引:0,他引:1  
Read-through translation of bacteriophage R17 amB2 coat cistron carrying an amber mutation at the seventh codon was studied in vitro using the crude cell extract (S30) derived from an Escherichia coli nonsuppressor strain. Despite the presence of termination factors as well as ribosome-releasing factor (RRF) which prevent the read-through translation [M. Ryoji, J. W. Karpen, and A. Kaji (1981) J. Biol. Chem. 256, 5798-5801], synthesis of coat-like protein still persists at a low level in this system. Characterization of this protein by peptide fingerprinting and amino acid sequencing was performed to reexamine the generally accepted notion that it is produced by amino acid misinsertion to the amber mutation codon. The results indicated, however, that the major population of this coat-like protein is produced as a result of reinitiation of translation from the eighth codon. Read-through by amino acid misinsertion in this system becomes predominant only when the Mg2+ concentration is higher than 16 mM.  相似文献   

17.
With the use of 3H-labeled R 17 amB2 phage RNA having an UAG codon at the seventh triplet of the coat cistron, release of the RNA from ribosomes at the termination codon was studied. The ribosome-releasing factor previously described was shown to stimulate the process of mRNA release at the termination factor (RF-1). GTP was required for this process and guanosine 5'-(beta,gamma-methylene)triphosphate could not replace GTP. No apparent change of size of R 17 RNA was observed during the release of the R 17 RNA from the ribosomes. The ribosome-releasing factor is distinct from the known termination codon-specific factor such as RF-1.  相似文献   

18.
19.
Mutational changes involving transitions can convert only one sense codon to ochre, two codons to amber, and two codons to UGA. One codon, UGG for tryptophan, can be converted by transitions to either amber or UGA. By transversion changes 15 other codons can be converted to ochre and/or amber and/or UGA. Ten amino acids can never be replaced by chain termination as a result of transition and transversion mutagenesis of single base-pairs. For two systems (bacteriophage T4 lysozyme and Escherichia coli K12 tryptophan synthetase A protein) in which the poly-peptide gene product has been completely sequenced one can construct predictive intra-genic distribution maps for the location of all possible chain-terminating mutations arising as a result of transitions and transversions.  相似文献   

20.
We have used site-specific mutagenesis to change the anticodon of a Xenopus laevis tyrosine tRNA gene so that it would recognize ochre codons. This tRNA gene is expressed when amplified in monkey cells as part of a SV40 recombinant and efficiently suppresses termination at both the ochre codon separating the adenovirus 2 hexon gene from a 23-kd downstream gene and the ochre codon at the end of the NS1 gene of influenza virus A/Tex/1/68. Termination at an amber codon of a NS1 gene of another influenza virus strain was not suppressed by the (Su+) ochre gene suggesting that in mammalian cells amber codons are not recognized by ochre suppressor tRNAs. Finally, microinjection into mammalian cells of both (Su+) ochre tRNA genes and selectible genes containing ochre nonsense mutations gives rise to colonies under selective conditions. We conclude that it should be possible to isolate a wide assortment of mammalian cell lines with ochre suppressor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号