首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed NOD-Rag2null IL-2Rγnull (NR2G) mice similar to NOD-scidIL-2Rγnull (NOG) mice that are known as an excellent host to generate humanized mice. To evaluate the usefulness of NR2G mice as a host for humanized mice, the engraftment rates and differentiation of human cells after human hematopoietic stem cell (HSC) transplantation were compared among NR2G, NOG, and NOD-scid mice. For this purpose, the appropriate irradiation doses to expand the niche for human stem cells in the bone marrow were first determined. As a result, 8 and 2.5 Gy in adult, and 4 and 1 Gy in newborn NR2G and NOG mice, respectively, were found to be appropriate. Next, 5 × 104 human umbilical cord blood CD34+ cells were intravenously inoculated into irradiated adult or newborn of the immunodeficient mice. These HSC transplantation experiments demonstrated that both NR2G and NOG mice showed high engraftment rates compared with NOD-scid mice, although NOG mice showed a slightly higher engraftment rate than that for NR2G mice. However, no difference was found in the human cell populations differentiated from HSCs between NR2G and NOG mice. The HSC transplantation experiments to adults and newborns of two immunodeficient mice also revealed that the HSC transplantation into newborn mice resulted in higher engraftment rate than those into adults. These results showed that NR2G mice could be used as an alternative host to NOG mice to generate humanized mice.  相似文献   

2.
Purpose  There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities. Thus, the first aim of this study was to establish a human tumor-bearing mouse model in which human immune cells can engraft and mediate ADCC, but where the endogenous mouse immune cells cannot mediate ADCC. The second aim was to evaluate ADCC mediated in these humanized mice by the defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody (mAb) which we have developed and which is now in phase I clinical trials. Experimental design  NOD/Shi-scid, IL-2Rγnull (NOG) mice were the recipients of human immune cells, and CCR4-expressing Hodgkin lymphoma (HL) and cutaneous T-cell lymphoma (CTCL) cell lines were used as target tumors. Results  Humanized mice have been established using NOG mice. The chimeric defucosylated anti-CCR4 mAb KM2760 showed potent antitumor activity mediated by robust ADCC in these humanized mice bearing the HL or CTCL cell lines. KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in HL-bearing humanized mice. Conclusions  Anti-CCR4 mAb could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. In addition, using our humanized mice, we can perform the appropriate preclinical evaluation of many types of antibody based immunotherapy.  相似文献   

3.
Humanized mice are crucial tools for studying human pathogens in systemic situations. An animal model of human coronavirus infectious disease has been generated by gene transfer of the human receptor for virus-cell interaction (aminopeptidase N, APN, CD13) into mice. We showed that in vitro and in vivo infections across the species barrier differ in their requirements. Transgenic cells were susceptible to human coronavirus HCoV-229E infection demonstrating the requirement of hAPN for viral cell entry. Transgenic mice, however, could not be infected suggesting additional requirements for in vivo virus susceptibility. Crossing hAPN transgenic mice with interferon unresponsive Stat1−/− mice resulted in markedly enhanced virus replication in vitro but did not result in detectable virus replication in vivo. Adaptation of the human virus to murine cells led to successful infection of the humanized transgenic mice. Future genetic engineering approaches are suggested to provide animal models for the better understanding of human infectious diseases.  相似文献   

4.
Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF−/−xNT-4−/− and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF−/−xNT-4−/− mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance. This work was supported by NIH-NIDCD R01-RDC007628.  相似文献   

5.

Background

Humanized mice able to reconstitute a surrogate human immune system (HIS) can be used for studies on human immunology and may provide a predictive preclinical model for human vaccines prior to clinical trials. However, current humanized mouse models show sub-optimal human T cell reconstitution and limited ability to support immunoglobulin class switching by human B cells. This limitation has been attributed to the lack of expression of Human Leukocyte Antigens (HLA) molecules in mouse lymphoid organs. Recently, humanized mice expressing HLA class I molecules have been generated but showed little improvement in human T cell reconstitution and function of T and B cells.

Methods

We have generated NOD.Rag1KO.IL2RγcKO mice expressing HLA class II (HLA-DR4) molecules under the I-Ed promoter that were infused as adults with HLA-DR-matched human hematopoietic stem cells (HSC). Littermates lacking expression of HLA-DR4 molecules were used as control.

Results

HSC-infused HLA-DR4.NOD.Rag1KO.IL-2RγcKO mice developed a very high reconstitution rate (>90%) with long-lived and functional human T and B cells. Unlike previous humanized mouse models reported in the literature and our control mice, the HLA-DR4 expressing mice reconstituted serum levels (natural antibodies) of human IgM, IgG (all four subclasses), IgA, and IgE comparable to humans, and elicited high titers of specific human IgG antibodies upon tetanus toxoid vaccination.

Conclusions

Our study demonstrates the critical role of HLA class II molecules for development of functional human T cells able to support immunoglobulin class switching and efficiently respond to vaccination.  相似文献   

6.
Hepatic infections by hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS) and human hepatocytes (HUHEP) in BALB/c Rag2-/- IL-2Rγc-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20–50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months) and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates.  相似文献   

7.
The anti-cancer drug cisplatin induces apoptosis by damaging DNA. Since a stilbene-derivative blocker of Cl/HCO3 exchangers and Cl channels, SITS, is known to induce cisplatin resistance in a manner independent of intracellular pH and extracellular HCO3, we investigated the relation between cisplatin-induced apoptosis and Cl channel activity in human adenocarcinoma KB cells. A stilbene derivative, DIDS, reduced cisplatin-induced caspase-3 activation and cell death, which were detected over 18 h after treatment with cisplatin. DIDS was also found to reduce sensitivity of KB cells to 5-day exposure to cisplatin. Whole-cell patch-clamp recordings showed that KB cells functionally express volume-sensitive outwardly rectifying (VSOR) Cl channels which are activated by osmotic cell swelling and sensitive to DIDS. Pretreatment of the cells with cisplatin for 12 h augmented the magnitude of VSOR Cl current. Thus, it is concluded that cisplatin-induced cytotoxicity in KB cells is associated with augmented activity of a DIDS-sensitive VSOR Cl channel and that blockade of this channel is, at least in part, responsible for cisplatin resistance induced by a stilbene derivative.  相似文献   

8.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

9.
Effect of endothelin-1 and chemically induced hypoxia on Na+−K+−Cl cotransport activity in cultured rat brain capillary endothelial cells was examined by using86Rb+ as a tracer for K+; bumetanide-sensitive K+ uptake was defined as Na+−K+−Cl cotransport activity. Endothelin-1, phorbol 12-myristate 13-acetate (PMA), or thapsigargin increased Na+−K+−Cl cotransport activity. A protein kinase C inhibitor, bisindolylmaleimide, inhibited PMA- and endothelin-1- (but not thapsigargin-) induced Na+−K+−Cl cotransport activity, indicating the presence of both protein kinase C-dependent regulatory mechanisms and protein kinase C-independent mechanisms which involve intracellular Ca2+. Oligomycin, sodium azide, or antimycin A increased Na+−K+−Cl cotransport activity by 80–200%. Oligomycin-induced Na+−K+−Cl cotransport activity was reduced by an intracellular Ca2+ chelator (BAPTA/AM) but not affected by bisindolylmaleimide, suggesting the involvement of intracellular Ca2+, and not protein kinase C, in hypoxia-induced Na+−K+−Cl cotransport activity. Portions were presented at “27th Annual Meeting, The American Society for Neurochemistry” Philadelphia, Pennsylvania, March 2–6, 1996.  相似文献   

10.
The presence of a relatively mature CD4+ CD8 (SP) T cell subset in mouse thymus has been demonstrated. Composing of 10% of total CD4SP thymocytes, this subset is defined by the absence of 3G11 and 6C10 expression with a phenotype of CD69+/−, HSAmed/lo and heterogeneous for Qa-2 expression. The proliferation capability of TCRαβ+ 3Gl l 6C10 CD4+ CD8 thymocytes was high while using Con A stimulus. And Con A stimulation could result in secretion of IL4, IL-10, IL-6 and a little amount of IFNγ. IL-2 was barely detectable. This is distinct from typical Th0 type cytokines. The cells of this subset were NK1.1 negative, but strongly expressed GATA-3 mRNA. The results suggest that the CD4+ subset of 3G11 6C10 NK1.1 phenotype possesses immunocompetent cells with functions characteristic of Th2-like cytokines, which may indicate the cells at transitional status from Th0 to Th2, with a propensity to Th2. Project supported by the National Natural Science Foundation of China (Grant No. 39730410).  相似文献   

11.
Background: There are controversial reports on the effect of sodium-potassium adenosine triphosphatase (Na+-K+ ATPase) inhibition on mast cell mediator release. Some of them have indicated that ouabain (strophanthin G), a specific Na+-K+ ATPase inhibitor, inhibited the release, whereas the others have shown that ouabain had no effect or even had a stimulatory effect on the mediator secretion. Most of these studies have utilized animal-derived mast cells. The aim of this study was to determine the effect of Na+-K+ ATPase inhibition on human skin mast cells. Methods: Unpurified and purified mast cells were obtained from newborn foreskins and stimulated by calcium ionophore A23187 (1 μM) for 30 min following a 1 hr incubation with various concentrations (10−4 to 10−8 M) of ouabain. Histamine release was assayed by enzyme-linked immunosorbent assay (ELISA). Results: The results indicated that ouabain had no significant effect on the non-immunologic histamine release from human skin mast cells, in vitro. Conclusions: Na+-K+ ATPase inhibition by ouabain had no significant effect on the non-immunologic histamine release from human cutaneous mast cells and suggested differences between human and animal mast cells.  相似文献   

12.
The appearance of human immunodeficiency virus type 1 (HIV-1) plasma viremia is associated with progression to symptomatic disease and CD4+ T cell depletion. To locate the source of systemic viremia, this study employed a novel method to trace HIV-1 infection in vivo. We created JRCSFξnef, a pool of infectious HIV-1 (strain JR-CSF) with highly mutated nef gene regions by random mutagenesis PCR and infected this mutated virus pool into both Jurkat-CCR5 cells and hematopoietic stem cell-transplanted humanized mice. Infection resulted in systemic plasma viremia in humanized mice and viral RNA sequencing helped us to identify multiple lymphoid organs such as spleen, lymph nodes, and bone marrow but not peripheral blood cells as the source of systemic viremia. Our data suggest that this method could be useful for the tracing of viral trafficking in vivo.  相似文献   

13.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied.Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals.Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.  相似文献   

14.
Rectal transmission is one of the main routes of infection by human immunodeficiency virus type 1 (HIV-1). To efficiently study transmission mechanisms and prevention strategies, a small animal model permissive for rectal transmission of HIV is mandatory. We tested the susceptibility of RAG2−/−γc−/− mice transplanted with human cord blood hematopoietic stem cells to rectal infection with HIV. We rectally exposed these humanized mice to cell-free and cell-associated HIV. All mice remained HIV negative as assessed by plasma viral load. The same mice infected intraperitoneally showed high levels of HIV replication. In the gut-associated lymphatic tissue, we found disproportionately smaller numbers of human cells than in other lymphoid organs. This finding may explain the observed resistance to rectal transmission of HIV. To increase the numbers of local HIV target cells and the likelihood of HIV transmission, we treated mice with different proinflammatory stimuli: local application of interleukin-1β, addition of seminal plasma to the inoculum, or induction of colitis with dextran sodium sulfate. These procedures attracted some human leukocytes, but the transmission rate was still very low. The humanized mice showed low levels of human engraftment in the intestinal tract and seem to be resistant to rectal transmission of HIV, and thus they are an unsuitable model for this application.  相似文献   

15.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

16.
Humanized mice reconstituted with human hematopoietic cells have been developed as an experimental animal model for human immunodeficiency virus type 1 (HIV-1) infection. Myeloablative irradiation is usually performed to augment the engraftment of donor hematopoietic stem cells (HSCs) in recipient mice; however, some mouse strains are susceptible to irradiation, making longitudinal analysis difficult. We previously attempted to construct humanized NOD/SCID/JAK3null (hNOJ) mice, which were not irradiated prior to human HSC transplantation. We found that, over time, many of the reconstituted CD4+ T cells expanded with an activated effector memory phenotype. Therefore, the present study used hNOJ mice that were irradiated (hNOJ (IR+)) or not (hNOJ (IR−)) prior to human HSC transplantation to examine whether the development and cellularity of the reconstituted CD4+ T cells were influenced by the degree of chimerism, and whether they affected HIV-1 infectivity. Indeed, hNOJ (IR+) mice showed a greater degree of chimerism than hNOJ (IR−) mice. However, the conversion of CD4+ T cells to an activated effector memory phenotype, with a high percentage of cells showing Ki-67 expression, occurred in both hNOJ (IR+) and hNOJ (IR−) mice, probably as a result of lymphopenia-induced homeostatic expansion. Furthermore, when hNOJ (IR+) and hNOJ (IR−) mice, which were selected as naïve- and memory CD4+ T cell subset-rich groups, respectively, were infected with CCR5-tropic HIV-1 in vivo, virus replication (as assessed by the plasma viral load) was delayed; however, the titer subsequently reached a 1-log higher level in memory-rich hNOJ (IR−) mice than in naïve-rich hNOJ (IR+) mice, indicating that virus infectivity in hNOJ mice was affected by the different status of the reconstituted CD4+ T cells. Therefore, the hNOJ mouse model should be used selectively, i.e., according to the specific experimental objectives, to gain an appropriate understanding of HIV-1 infection/pathogenesis.  相似文献   

17.
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), τc = 19 min. In contrast, a hypotonic challenge induced a rapid (τc = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24°C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 μM), ouabain (1 mM), DIDS (1 mM), EIPA (100 μM), or Na+-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl channel and K+-Cl cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 μM), high K+ (20 mM) or Cl-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na+-K+-2Cl cotransporter (Na+-K+-2Cl) and the Na+-K+ pump. Inhibition of K+ and Cl channels and KCC but not Na+-K+-2Cl affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.  相似文献   

18.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

19.
Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection.One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8.We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9).The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (http://jaxmice.jax.org/research/immunology/005557-housing.html).  相似文献   

20.
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34+ fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating mouse tissues. Here, we show that humanized BLT mice sustained high-level disseminated human immunodeficiency virus (HIV) infection, resulting in CD4+ T-cell depletion and generalized immune activation. Following infection, HIV-specific humoral responses were present in all mice by 3 months, and HIV-specific CD4+ and CD8+ T-cell responses were detected in the majority of mice tested after 9 weeks of infection. Despite robust HIV-specific responses, however, viral loads remained elevated in infected BLT mice, raising the possibility that these responses are dysfunctional. The increased T-cell expression of the negative costimulator PD-1 recently has been postulated to contribute to T-cell dysfunction in chronic HIV infection. As seen in human infection, both CD4+ and CD8+ T cells demonstrated increased PD-1 expression in HIV-infected BLT mice, and PD-1 levels in these cells correlated positively with viral load and inversely with CD4+ cell levels. The ability of humanized BLT mice to generate both cellular and humoral immune responses to HIV will allow the further investigation of human HIV-specific immune responses in vivo and suggests that these mice are able to provide a platform to assess candidate HIV vaccines and other immunotherapeutic strategies.An ideal animal model of human immunodeficiency virus (HIV) infection remains elusive. Nonhuman primates that are susceptible to HIV infection typically do not develop immunodeficiency (63), and although the simian immunodeficiency virus (SIV) infection of rhesus macaques has provided many critically important insights into retroviral pathogenesis (30), biological and financial considerations have created some limitations to the wide dissemination of this model. The great need for an improved animal model of HIV itself recently has been underscored by the disappointing results of human trials of MRKAd5, an adenovirus-based HIV type 1 (HIV-1) vaccine. This vaccine was not effective and actually may have increased some subjects'' risk of acquiring HIV (53). In the wake of these disappointing results, there has been increased interest in humanized mouse models of HIV infection (54). The ability of humanized mouse models to test candidate vaccines or other immunomodulatory strategies will depend critically on the ability of these mice to generate robust anti-HIV human immune responses.Mice have provided important model systems for the study of many human diseases, but they are unable to support productive HIV infection, even when made to express human coreceptors for the virus (7, 37, 52). A more successful strategy to humanize mice has been to engraft human immune cells and/or tissues into immunodeficient severe combined immunodeficiency (SCID) or nonobese diabetic (NOD)/SCID mice that are unable to reject xenogeneic grafts (39, 42, 57). Early versions of humanized mice supported productive HIV infection and allowed investigators to begin to address important questions in HIV biology in vivo (23, 40, 43-45). More recently, human cord blood or fetal liver CD34+ cells have been used to reconstitute Rag2−/− interleukin-2 receptor γ chain-deficient (γc−/−) and NOD/SCID/γc−/− mice, resulting in higher levels of sustained human immune cell engraftment (27, 29, 61). These mice have allowed for stable, disseminated HIV infection (2, 4, 24, 65, 67), including mucosal transmission via vaginal and rectal routes (3). These mice recently have been used to demonstrate an important role for Treg cells in acute HIV infection (29) and to demonstrate that the T-cell-specific delivery of antiviral small interfering RNA is able to suppress HIV replication in vivo (31). These mice also have demonstrated some evidence of adaptive human immune responses, including the generation of HIV-specific antibody responses in some infected mice (2, 65), and some evidence of humoral and cell-mediated responses to non-HIV antigens or pathogens (24, 61). Most impressively, Rag2−/− γc−/− mice reconstituted with human fetal liver-derived CD34+ cells have generated humoral responses to dengue virus infection that demonstrated both class switching and neutralizing capacity (32). In spite of these advances, however, these models have not yet been reported to generate de novo HIV-specific cell-mediated immune responses, which are considered to be a crucial arm of host defense against HIV infection in humans.In contrast to humanized mouse models in which only human hematopoietic cells are transferred into immunodeficient mice, the surgical implantation of human fetal thymic and liver tissue has been performed in addition to the transfer of human hematopoietic stem cells (HSC) to generate mice in which human T cells are educated by autologous human thymic tissue rather than by the xenogeneic mouse thymus. Melkus and colleagues refer to mice they have reconstituted in this way as NOD/SCID-hu BLT (for bone marrow, liver, and thymus), or simply BLT, mice (41). We previously referred to mice that we have humanized in a similar way as NOD/SCID mice cotransplanted with human fetal thymic and liver tissues (Thy/Liv) and CD34+ fetal liver cells (FLC) (33, 60) but now adopt the designation BLT mice as well. BLT mice demonstrate the robust repopulation of mouse lymphoid tissues with functional human T lymphocytes (33, 41, 60) and can support the rectal and vaginal transmission of HIV (13, 59). Further, BLT mice demonstrate antigen-specific human immune responses against non-HIV antigens and/or pathogens (41, 60). The ability of these mice to generate human immune responses against HIV, however, has not yet been reported. In this study, we investigated whether the provision of autologous human thymic tissue in BLT mice generated by the cotransplantion of human fetal Thy/Liv tissues and CD34+ FLC would allow for the maturation of human T cells in humanized mice capable of providing improved cellular responses to HIV as well as providing adequate help for improved humoral responses. To describe the cells contributing to human immune responses in BLT mice, we also characterized the phenotypes of multiple subsets of T cells, B cells, dendritic cells (DCs), and monocytes/macrophages present in uninfected humanized mice. The generation of robust HIV-directed human cellular and humoral immune responses in these mice would further demonstrate the ability of humanized mice to provide a much needed platform for the evaluation of HIV vaccines and other novel immunomodulatory strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号