首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High rate of mosaicism in tuberous sclerosis complex.   总被引:8,自引:0,他引:8       下载免费PDF全文
Six families with mosaicism are identified in a series of 62 unrelated families with a mutation in one of the two tuberous sclerosis complex (TSC) genes, TSC1 or TSC2. In five families, somatic mosaicism was present in a mildly affected parent of an index patient. In one family with clinically unaffected parents, gonadal mosaicism was detected after TSC was found in three children. The detection of mosaicism has consequences for genetic counseling of the families involved, as changed risks apply to individuals with mosaicism, both siblings and parents. Clinical investigation of parents of patients with seemingly sporadic mutations is essential to determine their residual chance of gonadal and/or somatic mosaicism, unless a mosaic pattern is detected in the index patient, proving a de novo event. In our data set, the exclusion of signs of TSC in the parents of a patient with TSC reduced the chance of one of the parents to be a (mosaic) mutation carrier from 10% to 2%. In the five families with somatic mosaicism, the parent was given the diagnosis after the diagnosis was made in the child.  相似文献   

2.
  1. Download : Download high-res image (224KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
Survivin expression in tuberous sclerosis complex cells   总被引:1,自引:0,他引:1  
Tuberous Sclerosis Complex (TSC) is a tumor suppressor gene disorder with mutations of TSC1/TSC2 genes. This leads to the development of hamartomas that most frequently affect central nervous system, kidney, and skin. Angiomyolipomas are abdominal masses made up of muscle vessels and adipose tissues that grow mostly in proximity to kidneys and liver. Bleeding and kidney failure are the major justification for surgery. This study shows that angiomyolipoma-derived human smooth muscle TSC2-/- cells express the apoptosis inhibitor protein survivin when exposed to IGF-1. Survivin expression is also triggered whenever culture conditions perturb normal TSC2-/- cell function, such as the omission of EGF from the growth medium, the supplementation of anti-EGFR, blockade of PI3K and ERK, or inhibition of mTOR. Interestingly, single or simultaneous inhibition of PI3K by LY294002 and ERK by PD98059 does not prevent IGF-1-mediated survivin expression. Apoptogenic Smac/DIABLO, which is constitutively expressed by TSC2-/- A+ cells, is down-regulated by IGF-1 even in the presence of LY294002 and PD98059. These cells release IGF-1 by means of a negative feedback-regulated mechanism that is overrun when they are exposed to antibodies to IGF-1R, which increases the released amount by more than 400%. The autocrine release of IGF-1 may therefore be a powerful mechanism of survival of the tightly packed cells in the thick-walled vessels of TSC angiomyolipoma and in lymphangioleiomyomatosis (LAM) nodules. Future experimental therapies for TSC and LAM may result from the targeted inhibition of survivin, which may enhance sensitivity to TSC2 therapy.  相似文献   

5.
Tuberous sclerosis complex (TSC) is associated with TSC1 or TSC2 gene mutations resulting in hyperactivation of the mTORC1 pathway. This mTORC1 activation is associated with abnormal tissue development and proliferation such that in the kidney there are both solid tumors and cystic lesions. This review summarizes recent advances in tuberous sclerosis complex nephrology and focuses on the genetics and cell biology of tuberous sclerosis complex renal disease, highlighting a role of extracellular vesicles and the innate immune system in disease pathogenesis.  相似文献   

6.
Recently we identified a novel 250 kDa protein in adipocytes that is a substrate for the insulin-activated protein kinase Akt. We refer to this protein as AS250 for Akt substrate of 250 kDa. AS250 has a predicted GTPase activating protein (GAP) domain at its carboxy terminus. This domain shows some homology to the GAP domains for Rheb at the carboxy terminus of the protein tuberin and for Rap1 in the protein Rap1 GAP. The present study further characterizes AS250. The cDNA sequence for human AS250 is reported, and the sites that undergo phosphorylation upon insulin treatment of adipocytes have been identified by tandem mass spectrometry. We have found that in adipocytes AS250 exists as a complex with a novel protein of 1484 amino acids known as KIAA1219. The complex of AS250 with KIAA1219 is notably similar to the important regulatory complex of the protein tuberin with hamartin (the tuberous sclerosis complex), in the size of its subunits, the location of the GAP domain, and its phosphorylation by Akt. In an effort to detect the cellular role of the AS250/KIAA1219 complex, we generated 3T3-L1 adipocytes that largely lack AS250 by shRNA knockdown and examined several insulin-dependent effects. The knockdown of AS250 had no effect on insulin activation of the kinases, Akt, 70 kDa S6 kinase, or ERK1/2, or on insulin-stimulated actin bundling, and it had only a slight effect on insulin-stimulated GLUT4 translocation.  相似文献   

7.

Background

RNA viruses have high mutation rates and exist within their hosts as large, complex and heterogeneous populations, comprising a spectrum of related but non-identical genome sequences. Next generation sequencing is revolutionising the study of viral populations by enabling the ultra deep sequencing of their genomes, and the subsequent identification of the full spectrum of variants within the population. Identification of low frequency variants is important for our understanding of mutational dynamics, disease progression, immune pressure, and for the detection of drug resistant or pathogenic mutations. However, the current challenge is to accurately model the errors in the sequence data and distinguish real viral variants, particularly those that exist at low frequency, from errors introduced during sequencing and sample processing, which can both be substantial.

Results

We have created a novel set of laboratory control samples that are derived from a plasmid containing a full-length viral genome with extremely limited diversity in the starting population. One sample was sequenced without PCR amplification whilst the other samples were subjected to increasing amounts of RT and PCR amplification prior to ultra-deep sequencing. This enabled the level of error introduced by the RT and PCR processes to be assessed and minimum frequency thresholds to be set for true viral variant identification. We developed a genome-scale computational model of the sample processing and NGS calling process to gain a detailed understanding of the errors at each step, which predicted that RT and PCR errors are more likely to occur at some genomic sites than others. The model can also be used to investigate whether the number of observed mutations at a given site of interest is greater than would be expected from processing errors alone in any NGS data set. After providing basic sample processing information and the site’s coverage and quality scores, the model utilises the fitted RT-PCR error distributions to simulate the number of mutations that would be observed from processing errors alone.

Conclusions

These data sets and models provide an effective means of separating true viral mutations from those erroneously introduced during sample processing and sequencing.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1456-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
The mechanisms that control TLR-induced responses, including endotoxin tolerance, have been not well understood. The tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that inhibits the mammalian target of rapamycin (mTOR). We show in this study that deficiency of TSC1 results in enhanced activation of not only mTOR complex 1 (mTORC1), but also JNK1/2, following LPS stimulation in macrophages. TSC1-deficient macrophages produce elevated proinflammatory cytokines and NO in response to multiple TLR ligands. Such enhanced TLR-induced responses can be inhibited by reducing mTORC1 and JNK1/2 activities with chemical inhibitors or small hairpin RNA, suggesting that TSC1 negatively controls TLR responses through both mTORC1 and JNK1/2. The impact of TSC1 deficiency appeared not limited to TLRs, as NOD- and RIG-I/MDA-5-induced innate responses were also altered in TSC1-deficient macrophages. Furthermore, TSC1 deficiency appears to cause impaired induction of endotoxin tolerance in vitro and in vivo, which is correlated with increased JNK1/2 activation and can be reversed by JNK1/2 inhibition. Our results reveal a critical role of TSC1 in regulating innate immunity by negative control of mTORC1 and JNK1/2 activation.  相似文献   

11.
12.
Tuberous sclerosis complex(TSC) is a neurocutaneous syndrome with serious clinical presentations, an autosomal dominant genetic disorder involving multiple organs and systems. We retrospectively investigated the clinical manifestations and genotypes of 20 Chinese children with TSC to enable informed diagnostic and surveillance recommendations in China. A retrospective analysis of clinical manifestations in 20 children(7.00±5.30 years old) with TSC was conducted. A genetic testing of the genes TSC1 and TSC2 was performed in 14 children.The earliest manifestations of TSC were skin lesions(80% of patients) and seizures(75%). Fourteen of the children presented with retinal hamartomas, and 2 of these underwent eye enucleation at other hospitals through misdiagnosis. On magnetic resonance imaging, 18 children exhibited subependymal nodules, and 16 ones showed cortical nodules. 5 cases of non-renal hamartomas, 5 cases of multiple renal cysts, and 5 cases of cardiac rhabdomyomas were observed.The genotyping of TSC1 and TSC2 in 14 children revealed 11 with mutations in TSC2, 2 with mutations in TSC1, and no mutations of either gene in one patient. Eight of these observed mutations are reported here in for the first time. The illness presentations of the TSC2-mutated patients were more severe than that of patients carrying TSC1 mutations.There were differences in the mutations of TSC genes in Chinese children from those reported in other countries. The described clinical characteristics and genotyping will help pediatric neurologists to understand, diagnosis, and treat TSC.  相似文献   

13.
14.
Tuberous sclerosis complex (TSC), an autosomal dominant disease caused by mutations in either TSC1 or TSC2, is characterized by the development of hamartomas in a variety of organs. Concordant with the tumor-suppressor model, loss of heterozygosity (LOH) is known to occur in these hamartomas at loci of both TSC1 and TSC2. LOH has been documented in renal angiomyolipomas (AMLs), but loss of the wild-type allele in cortical tubers appears to be very uncommon. Analysis of second, somatic events in tumors for which the status of both TSC1 and TSC2 is known is essential for exploration of the pathogenesis of TSC-lesion development. We analyzed 24 hamartomas from 10 patients for second-hit mutations, by several methods, including LOH, scanning of all exons of both TSC1 and TSC2, promoter methylation of TSC2, and clonality analysis. Our results document loss of the wild-type allele in six of seven AMLs, without evidence of the inactivation of the second allele in many of the other lesions, including tumors that appear to be clonally derived. Laser-capture microdissection further demonstrated loss of the second allele in all three cellular components of an AML. This study thus provides evidence that, in both TSC1 and TSC2, somatic mutations resulting in the loss of wild-type alleles may not be necessary in some tumor types-and that other mechanisms may contribute to tumorigenesis in this setting.  相似文献   

15.
Tuberous sclerosis complex (TSC) is a human genetic disorder in which loss of either TSC1 or TSC2 leads to development of hamartoma lesions, which can progress and be life-threatening or fatal. The TSC1/TSC2 protein complex regulates the state of activation of mTORC1. Tsc2+/− mice develop renal cystadenoma lesions which grow progressively. Both bortezomib and metformin have been proposed as potential therapeutics in TSC. We examined the potential benefit of 1 month treatment with bortezomib, and 4 month treatment with metformin in Tsc2+/− mice. Results were compared to vehicle treatment and treatment with the mTORC1 inhibitor rapamycin for 1 month. We used a quantitative tumor volume measurement on stained paraffin sections to assess the effect of these drugs. The median tumor volume per kidney was decreased by 99% in mice treated with rapamycin (p = 0.0004). In contrast, the median tumor volume per kidney was not significantly reduced for either the bortezomib cohort or the metformin cohort. Biochemical studies confirmed that bortezomib and metformin had their expected pharmacodynamic effects. We conclude that neither bortezomib nor metformin has significant benefit in this native Tsc2+/− mouse model, which suggests limited benefit of these compounds in the treatment of TSC hamartomas and related lesions.  相似文献   

16.
We report a rare association of Turner syndrome with both Neurofibromatosis type I and Tuberous Sclerosis. The patient had XOkaryotype with Turners stigmata and also had features of Neurofibromatosis 1 in the form of significant café-au-lait spots and Plexiform neurofibroma along with typical features of Tuberous Sclerosis complex. Pedigree analysis revealed that the elder brother of the proband in the family also suffered from Tuberous Sclerosis without the manifestation of Neurofibromatosis or any other genetic disorders. We hypothesize that these associations could be due to new independent mutations and also increased maternal and paternal age in a pre-disposition of Turner syndrome.  相似文献   

17.
A low rate of simultaneous double-nucleotide mutations in primates   总被引:1,自引:0,他引:1  
The occurrence of double-nucleotide (doublet) mutations is contrary to the normal assumption that point mutations affect single nucleotides. Here we develop a new method for estimating the doublet mutation rate and apply it to more than a megabase of human-chimpanzee-baboon genomic DNA alignments and more than a million human single-nucleotide polymorphisms. The new method accounts for the effect of regional variation in evolutionary rates, which may be a confounding factor in previous estimates of the doublet mutation rate. Furthermore we determine sequence context effects by using sequence comparisons over a variety of lineage lengths. This approach yields a new estimate of the doublet mutation rate of 0.3% of the singleton rate, indicating that doublet mutations are far rarer than previously thought. Our results suggest that doublet mutations are unlikely to have caused the correlation between synonymous and nonsynonymous substitution rates in mammals, and also show that regional variation and sequence context effects play an important role in primate DNA sequence evolution.  相似文献   

18.
19.
Recent studies have demonstrated the importance of insulin or insulin-like growth factor 1 (IGF-1) for regulation of pancreatic beta-cell mass. Given the role of tuberous sclerosis complex 2 (TSC2) as an upstream molecule of mTOR (mammalian target of rapamycin), we examined the effect of TSC2 deficiency on beta-cell function. Here, we show that mice deficient in TSC2, specifically in pancreatic beta cells (betaTSC2(-/-) mice), manifest increased IGF-1-dependent phosphorylation of p70 S6 kinase and 4E-BP1 in islets as well as an initial increased islet mass attributable in large part to increases in the sizes of individual beta cells. These mice also exhibit hypoglycemia and hyperinsulinemia at young ages (4 to 28 weeks). After 40 weeks of age, however, the betaTSC2(-/-) mice develop progressive hyperglycemia and hypoinsulinemia accompanied by a reduction in islet mass due predominantly to a decrease in the number of beta cells. These results thus indicate that TSC2 regulates pancreatic beta-cell mass in a biphasic manner.  相似文献   

20.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号