首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study aims to examine the effect of zinc supplementation on the release of some cytokines in young wrestlers actively involved in wrestling. A total of 40 male subjects of the same age group were included in the study: half were wrestlers and the other half were not involved in sports. The subjects were equally divided into four groups and treated during an 8-week period as follows: group 1, zinc-supplemented athletes; group 2, non-supplemented athletes; group 3, zinc-supplemented sedentary subjects, and group 4, non-supplemented sedentary group. Blood samples were taken from each subject at the beginning and at the end of the study period. The serum tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interpheron-γ levels (IFN-γ) were determined using the enzyme-linked immunosorbent assay method. At the beginning of the study, there were no significant differences of the measured parameters between the four study groups. At the end of the study, the levels of TNF-α, IL-2, and IFN-γ were significantly higher in the two zinc-supplemented groups compared to those that did not receive supplementation, regardless of the activity status (p < 0.01).  相似文献   

2.
The present study aims to evaluate the effect of selenium supplementation on lipid peroxidation and lactate levels in rats subjected to acute swimming exercise. Thirty-two adult male rats of Sprague–Dawley type were divided into four groups. Group 1, control; group 2, selenium-supplemented; group 3, swimming control; group 4, selenium-supplemented swimming group. The animals in groups 2 and 4 were supplemented with (i.p.) 6 mg/kg/day sodium selenite for 4 weeks. The blood samples taken from the animals by decapitation method were analyzed in terms of erythrocyte-reduced glutathione (GSH), serum glutathione peroxidase (GPx) and superoxide dismutase (SOD), and plasma malondialdehyde (MDA) and lactate using the colorimetric method, and serum selenium values using an atomic emission device. In the study, the highest MDA and lactate values were found in group 3, while the highest GSH, GPx and SOD values were obtained in group 4 (p < 0,001). Group 2 had the highest and group 3 had the lowest selenium levels (p < 0,001). Results of the study indicate that the increase in free radical production and lactate levels due to acute swimming exercise in rats might be offset by selenium supplementation. Selenium supplementation may be important in that it supports the antioxidant system in physical activity.  相似文献   

3.
Fluoride (F) becomes toxic at higher doses and induces some adverse effects on various organs, including brain. The mechanisms underlying the neurotoxicity caused by excess fluoride still remain unknown. The aims of this study were to examine F-induced oxidative stress (OS) and role of melatonin (MEL) and buffalo pineal proteins (PP) against possible F-induced OS in brain of rats. The 24 rats were taken in present study and were divided into four groups: control, F, F + PP, and F + MEL. The F group was given 150 mg/L orally for 28 days. Combined 150 ppm F and 100 μg/kg BW (i.p.) PP and F (150 ppm) + MEL (10 mg/kg BW, i.p.) were also administered. The activities of enzymatic, viz., superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), and non-enzymatic, viz., reduced glutathione (GSH) concentration, and the levels of malondialdehyde (MDA) in the brain tissue were measured to assess the OS. Fluoride administration significantly increased brain MDA compared with control group, while GSH levels were decreased in fluoride-treated groups, accompanied by the markedly reduced SOD, GPx, GR, and SOD activity. Buffalo PP and MEL administration caused brain MDA to decrease but caused SOD, GPx, GR, GSH, and CAT activities to increase to significant levels in F-treated animals. Together, our data provide direct evidence that buffalo PP and MEL may protect fluoride-induced OS in brain of rats through mechanisms involving enhancement of enzymatic and non-enzymatic antioxidant defense system. Therefore, this study suggested that PP and MEL can be useful in control of neurotoxicity induced by fluoride.  相似文献   

4.
This study was performed to determine how the calcium supplementation for a 4-week period affects the glucose and insulin levels at rest and at exhaustion in athletes. This is a 4-week study performed on 30 healthy subjects varying between 18 and 22 ages. Subjects were separated into three groups: first group (group supplemented with calcium, sedentary group), second group (calcium supplementations + exercise group), and third group (training group). Glucose and insulin parameters of the groups were measured four times, at rest and exhaustion in the beginning of the research and at rest and exhaustion after the end of 4 weeks application period. Exhaustion measurements both before and after the supplementations significantly decreased in compared to rest measurements in terms of insulin (p < 0.05). Significant difference was not determined in the glucose values of groups. In terms of glucose, values increased in all of the three groups occurred with exercise both before and after the supplementation by exercise and exhaustion (p < 0.05). The results of our study indicate that calcium gluconate supplementations for 4 weeks in sedentary subjects and athletes did not significantly affect plasma insulin levels at rest and exhaustion. However, glucose levels were affected by calcium supplementation and exhausting exercise in athletes.  相似文献   

5.
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Even though Cu is essential to life, it can become toxic to cells, at elevated tissue concentrations. Oxidative damage due to Cu has been reported in recent studies in various tissues. In this study, we aimed to determine the effect of excess Cu on oxidative and anti-oxidative substances in brain tissue in a rat model. Sixteen male Wistar albino rats were divided into two groups: the control group, which was given normal tap water, and the experimental group, which received water containing Cu in a dose of 1 g/l. All rats were sacrificed at the end of 4 wk, under ether anesthesia. Cu concentration in the liver and in plasma alanine aminotransferase (ALT) and aspartate transaminase (AST) activities were determined. There were multiparameter changes with significant ALT and AST activity elevation and increased liver Cu concentration. In brain tissue, Cu concentration, superoxide dismutase (SOD) activities, malondialdehyde (MDA) levels and glutathione (GSH) concentrations were determined. Brain Cu concentration was significantly higher in rats receiving excess Cu, compared with control rats (p < 0.05). Our results showed that SOD activities and GSH levels in brain tissue of the Cu-intoxicated animals were significantly lower than in the control group (p < 0.01 and p < 0,001, respectively). The brain MDA levels were found to be significantly higher in the experimental group than in the control group (p < 0.001). The present results indicate that excessive Cu accumulation in the brain depressed SOD activities and GSH levels and resulted in high MDA levels in brain homogenate due to the lipid peroxidation induced by the Cu overload.  相似文献   

6.
The effects of oral zinc supplementation on lipid peroxidation and the antioxidant defense system of alloxan (80-90 mg/kg)-induced diabetic rabbits were examined. Forty-five New Zealand male rabbits, 1 year old, weighing approximately 2.5 kg, were allocated randomly and equally as control, diabetic, and zinc-supplemented diabetic groups. After diabetes was induced, zinc-supplemented diabetic rabbits had 150 mg/L of zinc as zinc sulfate (ZnSO(4)) in their drinking tap water for 3 months. The feed and water consumption was higher in diabetic groups than (P<0.01) healthy rabbits. The body weight was lower in diabetic rabbits compared to control. The blood glucose levels were higher in diabetic groups than controls. The elevated plasma malondialdehyde (MDA) levels were determined in the diabetic group (P<0.01). The glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and ceruloplasmin levels in the diabetic group were decreased by the effect of diabetes but there was no difference between zinc-supplemented diabetic and control rabbits. Serum zinc concentrations were lower in diabetic rabbits but iron (Fe) and copper (Cu) levels in sera were not different among the groups. As a result, it was concluded that daily zinc supplementation could reduce the harmful effects of oxidative stress in diabetics.  相似文献   

7.
The aim of this study was to investigate the effects of supplemental antioxidant vitamins and minerals on lipid peroxidation and on the antioxidant systems in rabbits exposed to X-rays. The rabbits were divided into two experimental groups and one control group, each group containing seven rabbits. The first group (VG) received daily oral doses of vitamin E (460 mg/kg live weight) and vitamin C (100 mg/kg live weight). The second group (MG) was fed a mineral-enriched diet that contained 60 mg manganese chloride, 40 mg zinc sulfate, and 5 mg copper sulfate per kilogram of feed. The third group served as controls and received only a standard diet. Blood samples were obtained before and after the supplementation with vitamins or minerals, as well as before and after irradiation with a total dose of 550-rad X-rays. The blood samples were analyzed for their content of malondialdehyde (MDA), plasma vitamins C and E, retinol, reduced glutathione (GSH), and glutathione peroxidase activity (GPx). After irradiation, the control group showed increased levels of MDA and activity of GPx (p<0.05), whereas the levels of GSH, vitamin C, and vitamin E were decreased. In the VG, the concentration of MDA was lower (p<0.05), and the concentration of GSH and vitamins C and E were higher (p<0.05) when compared to controls. In the MG, the concentrations of MDA, GSH, vitamin C, and retinol were not affected by the mineral administration and radiation. The level of vitamin E in the MG increased with mineral administration (p<0.05), but decreased after irradiation (p<0.05). For the control group, the level of GSH was higher than in the two experimental groups. After irradiation, the VG animals had vitamin E and C levels that were higher than in MG and control groups (p<0.05). The activity of GPx was not affected by vitamin or mineral supplementation or by irradiation. We conclude that the supplementation with antioxidant vitamins and minerals may serve to reinforce the antioxidant systems, thus having a protective effect against cell damage by X-rays.  相似文献   

8.
We previously reported that reduced platelet endogenous antioxidant enzymes activities are related to the low plasma zinc level in patients with end-stage renal failure (ESRF). In this study, we attempt to evaluate whether dietary zinc deprivation reduces the activities of endogenous antioxidant and then enhances oxidative stress in the unstimulated platelet of normal and 5/6 nephrectomized (Nx) rats because increased platelet oxidative stress is suggested to involve in the incidence of thrombotic and atherosclerotic diseases. Male Sprague–Dawley rats (n = 48) were fed a zinc-deficient diet and deionized distilled water for 1 week to induce reduction of plasma zinc level. Half of the rats continued on this diet for 4 weeks as zinc-deplete group, and the other half were maintained on the same diet but with zinc-supplemented water (120 mg/L zinc sulfate solution) to correct the reduction of plasma zinc level as zinc-replete group. Half of each group underwent 5/6 Nx, while the other half underwent sham operation. Another 12 normal rats were fed standard rat chow (containing 23.4% protein and 50 ppm zinc) and drank deionized distilled water as normal control rats. In zinc-deplete rats including sham-operated and 5/6 Nx rats exhibited lower endogenous antioxidant enzymes activities such as reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione peroxidase (GPX) and higher malondialdehyde (MDA) levels than normal control rats in the unstimulated platelets. However, in zinc-replete rats including sham-operated and 5/6 Nx rats have a normal endogenous antioxidant enzymes activity and normal MDA levels in the unstimulated platelets. We suggest that in uremia, the low plasma zinc level may be a risk factor for thrombotic and atherosclerotic diseases because it reduces the activities of endogenous antioxidant enzymes and increases oxidative stress in the unstimulated platelet. Supported by grant 92-117 from Taipei Veterans General Hospital  相似文献   

9.
The study population included employees of metal works, with significant exposure to lead (Pb) for about 20 years (mean blood lead level PbB = 43 μg/dl), divided into four groups: normotensive (Pb-normotensive), high-normotensive, first (HT-1), and second degree (HT-2) of hypertension. The control group comprised of 30 office workers with normal blood pressure and no history of occupational exposure to lead. In erythrocytes, the activity of antioxidant enzymes and lipid peroxidation (measured as concentration of malondialdehyde (MDA)) was estimated. MDA concentration, glutathione peroxide (GPx), and superoxide dimutase (SOD) activities were significantly higher in Pb-normotensive group when compared to the normotensive control. Body mass index, age, duration of exposure to lead, and PbB were higher in both hypertensive groups than in Pb-normotensive or high-normotensive groups. MDA increased in HT-1 group by 48% and in HT-2 by 72%, and the activity of GPx decreased significantly in HT-1 group, by 30% and in HT-2 by 43%. No significant differences were observed in their activity of SOD, catalase, and glutathione reductase in erythrocytes. Arterial blood pressure (both systolic and diastolic) positively correlated with body mass index (BMI), age, lead exposure duration, PbB, MDA, and negatively correlated with GPx. There was no significant correlation between BMI and MDA, BMI and GPx, age and MDA, AND age and GPx. In conclusion: (1) lead increases erythrocyte MDA concentration and the activity of GPx as well as SOD in normotensive subjects. (2) Among individuals exposed to lead, with arterial hypertension diagnosed, higher body mass index, age, values of blood lead level, and prolonged exposure to lead have been noticed, accompanied by intensified oxidative stress and the decrease in the activity of glutathione peroxidase in erythrocytes. The reasons for increase of blood pressure in lead exposure remain unrecognized.  相似文献   

10.
The effects of magnesium supplementation on plasma magnesium, zinc, and copper levels were determined in young adult tae-kwon-do athletes and sedentary controls at rest and exhaustion. After a 4-week supplementation period with 10 mg/day/kg Mg, the plasma magnesium, copper, and zinc levels significantly increased in sedentary and training (90–120 min training 5 days a week) subjects when compared to nonsupplemented controls (p < 0.05).  相似文献   

11.
Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.  相似文献   

12.
This study was planned to investigate the pretreatment effect of resveratrol on streptozotocin-induced diabetic rats. The control group consisted of 10 male albino Sprague–Dawley rats, 10–12 weeks of age, weighing approximately 295 g. The first experimental group consisted of 15 albino Sprague–Dawley rats, 10–12 weeks of age, weighing approximately 305 g. This group was administered streptozotocin (55 mg/kg, intraperitoneally). The second experimental group (n = 15) was administered resveratrol (0.5 ml/day) 10 days before streptozotocin induction. A training period was performed for all groups before the experimental procedure, and systolic arterial blood pressures and heart rates were recorded daily. At the end of the 10th day, blood samples of control and experimental groups were drawn. Total nitrite, nitrite, nitrate, malondialdehyde (MDA), copper, and zinc concentrations in plasma were measured both in control and experimental groups. Additionally, superoxide dismutase, catalase activities, and copper and zinc concentrations in red cell were determined in each group. At the end of the study, increases in catalase activity, nitric oxide level, and zinc concentrations and decreases in lipid peroxidation product MDA and copper concentrations were found in the resveratrol-pretreated diabetic group when compared to the diabetic group. This study was presented at “The 5th International Congress of Pathophysiology (ISP2006)” June 28–July 1, 2006, Beijing, China.  相似文献   

13.
Physical growth disorders in under 5-year-old children are a common health problem in many countries including Iran. The aim of this study was to determine effects of supplemental zinc on physical growth in preschool children with retarded linear growth. This study was a community-based randomized controlled trial on 2–5-year-old children with height-for-age below 25th percentile of National Center for Health Statistics growth chart. Ninety children were randomly assigned in zinc group (ZG) or placebo group (PG). After 6 months of zinc or placebo supplementation, we followed up the children for another 6 months. Anthropometric indicators were measured before the intervention and then monthly for 11 months. Forty children in ZG and 45 in PG concluded the study. Zinc supplementation increased weight gain in boys (P = 0.04) and girls (P = 0.05) compared to placebo but had no significant effect on mid-upper arm circumference increment in either sexes. The most significant (P = 0.001) effect of Zinc supplementation was seen in boys’ height increment at the end of follow-up period. Stunted growth rate in ZG changed significantly (P = 0.01) from 26.7% to 2.5% throughout the study. This study showed that daily supplementation of 5 mg elemental zinc for 6 months improves physical growth in terms of height increment and weight gain in children with undesirable linear growth, especially in boys.  相似文献   

14.
The aim of this study was to investigate how zinc deficiency and supplementation affects lipid peroxidation in the renal tissue in ovariectomized rats. Four study groups were formed with 10 Spraque-Dawley rats each. Two of the groups served as normal and ovariectomized controls; the other two were ovariectomized rats that were zinc deficient and zinc supplemented, respectively. The zinc-deficient ovariectomized rats showed greater renal and plasma lipid peroxidation, as indicated by higher malondialdehyde levels than all other groups (p<0.05). These values were higher in the ovariectomized controls than those of the normal controls and of the ovariectomized, zinc-supplemented groups (p<0.05), which, in, turn, showed no significant differences of their respective renal and plasma malondialdehyde values. The renal and erythrocyte glutathione levels in the zinc-supplemented rats were higher than those in all other groups (p<0.05). The zinc-deficient group had the lowest renal and erythrocyte glutathione levels (p<0.05). The renal tissue zinc levels in the ovariectomized rats were higher than those in the zinc-deficient animals, but lower than in the normal controls and zincsupplemented rats (p<0.05). The zinc-supplemented animals had the highest renal tissue zinc levels (p<0.05). The results of this study suggest that zinc deficiency increases renal tissue damage in ovariectomized rats and that zinc supplementation can be used to prevent this condition.  相似文献   

15.
This study was conducted to investigate the effects of different sources of dietary selenium (Se) supplementation on growth performance, meat quality, Se deposition, and antioxidant property in broilers. A total of 600 one-day-old Ross 308 broilers with an average body weight (BW) of 44.30 ± 0.49 g were randomly allotted to three treatments, each of which included five replicates of 40 birds. These three groups received the same basal diet containing 0.04 mg Se/kg, supplemented with 0.15 mg Se/kg from sodium selenite (SS) or from l-selenomethionine (l-Se-methionine (Met)) or from d-selenomethionine (d-Se-Met). The experiment lasted 42 days. Both Se source and time significantly influenced (p < 0.01) drip loss of breast muscle. Supplementation with l-Se-Met and d-Se-Met were more effective (p < 0.05) in decreasing drip loss than SS. Besides, the pH value of breast muscle was also significantly influenced (p < 0.05) by time. The SS-supplemented diet increased more (p < 0.05) liver, kidney, and pancreas glutathione peroxidase (GSH-Px) activities than the d-Se-Met-supplemented diet. In addition, l-Se-Met increased more (p < 0.01) liver and pancreas GSH-Px activities than d-Se-Met. The antioxidant status was greatly improved in broilers of l-Se-Met-treated group in comparison with the SS-treated group and was illuminated by the increased glutathione (GSH) concentration in serum, liver, and breast muscle (p < 0.05); superoxide dismutase (SOD) activity in liver (p < 0.01); total antioxidant capability (T-AOC) in kidney, pancreas, and breast muscle (p < 0.05) and decreased malondialdehyde (MDA) concentration in kidney and breast muscle (p < 0.05) of broilers. Besides, supplementation with d-Se-Met was more effective (p < 0.01) in increasing serum GSH concentration and decreasing breast muscle MDA concentration than SS. l-Selenomethionine supplementation significantly increased GSH concentration in liver and breast muscle (p < 0.05); SOD activity in liver (p < 0.01); and T-AOC in liver, pancreas, and breast muscle (p < 0.05) of broilers, compared with broilers fed d-Se-Met diet. The addition of l-Se-Met and d-Se-Met increased (p < 0.01) Se concentration in serum and different organs studied of broilers in comparision with broilers fed SS diet. Therefore, dietary l-Se-Met and d-Se-Met supplementation could improve antioxidant capability and Se deposition in serum and tissues and reduce drip loss of breast muscle in broilers compared with SS. Besides, l-Se-Met is more effective than d-Se-Met in improving antioxidant status in broilers.  相似文献   

16.
Sulfite and related chemical such as sulfite salts and sulfur dioxide has been used as a preservative in food and drugs. This molecule has also been generated from the catabolism of sulfur-containing amino acids. Sulfite is a very reactive and potentially toxic molecule and has to be detoxified by the enzyme sulfite oxidase (SOX). The aim of this study was to investigate the effects of ingested sulfite on erythrocyte antioxidant status by measuring glucose-6-phosphate dehydrogenase (G-6-PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant status by measuring thiobarbituric acid reactive substances (TBARS) in normal and SOX-deficient rats. Rats were assigned to four groups (n = 10 rats/group) as follows; control (C), sulfite (CS), deficient (D), and deficient + sulfite (DS). SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten (W). Sulfite (25 mg/kg) was administered to the animals via their drinking water. At the end of 6 weeks, Erythrocyte G-6-PD, SOD, and GPx but not CAT activities were found to be significantly increased with and without sulfite treatment in SOX-deficient groups. Sulfite treatment alone was also significantly increased erythrocytes’ SOD activity in CS group compared to control. TBARS levels were found to be significantly increased in CS and DS groups and decreased in D group. When SOX-deficient rats treated with sulfite, TBARS level was still higher than other groups. In conclusion, these results suggested that erythrocyte antioxidant capacity, a defense mechanism against the oxidative challenge, increased by endogenous and exogenous sulfite due to its oxidant nature. This increase was also observed in CS and DS groups but it was insufficient to prevent lipid peroxidation.  相似文献   

17.
The present study aims to examine the effect of supplementation of zinc on the distribution of various elements in the sera of diabetic rats subjected to an acute swimming exercise. A total of 80 Sprague–Dawley-type adult male rats were equally allocated to one of eight groups: Group 1, general; Group 2, zinc-supplemented; Group 3, zinc-supplemented diabetic; Group 4, swimming control; Group 5, zinc-supplemented swimming; Group 6, zinc-supplemented diabetic swimming; Group 7, diabetic swimming; and Group 8, diabetes. The rats were injected with 40 mg/kg/day subcutaneous streptozotocin (STZ) twice, with a 24-h interval between two injections. Zinc was supplemented at a dose of 6 mg/kg/day (ip) for 4 weeks. Blood samples were collected at the end of the 4-week study, and serum levels of lead, cobalt, molybdenum, chrome, sulfur, magnesium, manganese, sodium, potassium, phosphorus, copper, iron, calcium, zinc, and selenium (mg/L) were determined with atomic emission. The lowest molybdenum, chrome, copper, iron, potassium, magnesium, sodium, phosphorus, lead, selenium, and zinc values were obtained in Group 7 and 8. These same parameters were higher in the swimming exercise group (Group 4), relative to all other groups. The values in zinc-supplemented groups were found lower than the values in Group 4, but higher than those in Group 6 and 7. The results obtained from the study demonstrate that acute swimming exercise and diabetes affect the distribution of various elements in the serum, while zinc supplementation can prevent the negative conditions associated with both exercise and diabetes.  相似文献   

18.
The aim of the present study was to measure zinc (Zn) and iron (Fe) concentration in human semen and superoxide dismutase (SOD) activity in seminal plasma and correlate the results with sperm quality. Semen samples were obtained from men (N = 168) undergoing routine infertility evaluation. The study design included two groups based on the ejaculate parameters. Group I (n = 39) consisted of males with normal ejaculate (normozoospermia), and group II (n = 129) consisted of males with pathological spermiogram. Seminal Zn and Fe were measured in 162 samples (group I, n = 38; group II, n = 124) and SOD activity in 149 samples (group I, n = 37; group II, n = 112). Correlations were found between SOD activity and Fe and Zn concentration, and between Fe and Zn concentration. SOD activity was negatively associated with volume of semen and positively associated with rapid progressive motility, nonprogressive motility, and concentration. Negative correlation was stated between Fe concentration and normal morphology. Mean SOD activity in seminal plasma of semen from men of group I was higher than in seminal plasma of semen from men of group II. Fe concentration was higher in teratozoospermic males than in males with normal morphology of spermatozoa in group II. Our results suggest that Fe may influence spermatozoa morphology.  相似文献   

19.
We report the effects of chromium picolinate (CrPic) on micronucleus frequency, morphology of lymphocytes, and lipid peroxidation in calves. Twenty-four Holstein calves were selected for the study. They were kept in a farm and were fed a commercially available calf diet and alfalfa, ad libitum. The animals were divided into three groups of eight subjects each and were treated as follows: The first group was supplemented with a daily dose of 200 μg Cr as chromium picolinate; a second group received 400 μg Cr per day and a third group that served as control received no supplemental chromium. After 12-week supplementation, blood samples were collected to determine the micronucleus frequency, the apoptotic cell percentage, and the malondialdehyde (MDA) and blood chromium levels. In both supplemented groups, the cells had irregularly shaped and segmented nuclei. Supplementation also increased the percentage of apoptotic cells (p < 0.001) and serum MDA (p < 0.01) and slightly increased the chromium levels. The animals supplemented with 400 μg showed a significant increase of micronucleus frequency (p < 0.01). The results of this study suggest that supplementation with 200 and 400 μg chromium as chromium picolinate may lead to cytotoxicity. The higher level of supplementation may also have genotoxic effects. However, further studies investigating the mechanism of the action of CrPic are required.  相似文献   

20.
The present study was conducted to compare the trace elements and oxidative status between uremic patients with and without dementia. Chronic hemodialysis patients with dementia (n = 20) and without dementia (n = 25), and age-matched healthy volunteers (n = 20) were enrolled. The nutritional status, blood levels of trace elements aluminum (Al), zinc (Zn), copper (Cu), magnesium (Mg) and iron (Fe), malondialdehyde (MDA), and protein carbonyl production, antioxidant enzymes glutathione peroxidase (GPx), and glutathione reductase (GR) activities were measured. No significant difference in nutritional status or clinical characteristics was observed between nondementia and dementia patients. However, uremic patients with dementia have significantly higher Al, Cu, and Mg and lower Zn concentrations, as well as increased Cu/Zn ratio in comparison to nondementia patients. There were statistically significant increased MDA and carbonyl production and decreased GPx and GR activities in dementia patients. Furthermore, the significant associations of Al, Mg, and Cu/Zn ratio with oxidative status in patients with dementia were noted. The dementia may initially worsen with abnormal metabolism of trace elements and oxidative stress occurrence. Our results suggest that abnormalities in trace element levels are associated with oxidative stress and may be a major risk factor in the dementia development of uremic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号