首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution 13C NMR combined with chemical analysis were used to study the formation of metabolites from [1-13C]-labelled glucose by the salt-tolerant yeast Debaryomyces hansenii after transfer to media containing 8% NaCl. Time course spectroscopy of an aerobic cell suspension showed [1,3-13C]glycerol as the predominant end product. Perchloric acid extracts revealed additional less prominent incorporation of label into arabinitol, trehalose, glutamic acid, and alanine. The incorporation into trehalose and arabinitol showed a transient increase after shift to the high salinity medium. It is concluded that glycerol and arabinitol are the major organic solutes in D. hansenii, the production of glycerol being strongly induced by high salinity. Analysis of labelled extracts of D. hansenii after transfer to 8% NaCl media containing [1-13C]- or [6-13C]glucose, demonstrated that glucose is dissimilated via a combination of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway, with the former playing a major role in glycerol formation and the latter in arabinitol production. The almost exclusive labelling of C5 of arabinitol from [6-13C]glucose indicates that the pathway to arabinitol proceeds via reduction of ribulose-5-phosphate.Abbreviations used NMR nuclear magnetic resonance - EMP Emden-Meyerhof-Parnas - PP pentose phosphate - GAP glyceraldehyde phosphate - DHAP dihydroxyacetone phosphate - ppm parts per million  相似文献   

2.
Energetic and intermediary metabolism was studied in a Pet- mutant of Saccharomyces cerevisiae with a calcium-sensitive phenotype that shows an inability to grow when cultured in a medium containing non-fermentable substrates. The perchloric acid extracts were prepared from suspensions of cls11 mutant and wild-type cells incubated with [1,3-13C]glycerol or [2-13]acetate, and analyzed by 31P, 13C and 1H NMR. 31P- and 1H-NMR spectra showed significant differences between cls11 and wild-type cells at the level of amino acids, the storage carbohydrate trehalose (higher in mutant cells), and sugar phosphates (higher in wild-type cells). 13C-NMR spectra revealed major differences in the steady-state labelling of glutamate carbons. For incubations with [1,3-13C]glycerol, we estimated from the relative 13C enrichment of glutamate carbons that acetyl-CoA C2 is 43% C13 labelled in wild-type and 10% 13C labelled in mutant cells, respectively. For incubations with [2-13C]acetate, we calculated that the ratio of the relative flux through the glyoxylate shunt versus oxidative reactions is 58% in wild-type cells and 44% in the cls11 mutant cells. Again, a dilution of the relative enrichment of C2 of acetyl-CoA was observed in the mutant cells (89%) compared to the wild-type cells (97%). These results are discussed in terms of pleiotropic defects in non-fermentable carbon metabolism in mutant cells.  相似文献   

3.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Perchloric acid extracts of rabbit renal proximal convoluted tubular cells (PCT) incubated with [2-13C]glycerol and [1,3-13C]glycerol were investigated by 13C-NMR spectroscopy. These 13C-NMR spectra enabled us to determine cell metabolic pathways of glycerol in PCT cells. The main percentage of 13C-label, arising from 13C-enriched glycerol, was found in glucose, lactate, glutamine and glutamate. So far it can be concluded that glycerol is a suitable substrate for PCT cells and is involved in gluconeogenesis and glycolysis as well in the Krebs cycle intermediates. Label exchange and label enrichment in 13C-labelled glucose, arising from [2-13C]glycerol and [1,3-13C]glycerol, is explained by label scrambling through the pentose shunt and a label exchange in the triose phosphate pool. From relative enrichments it is estimated that the ratio of the pyruvate kinase flux to the gluconeogenetic flux is 0.97:1 and that the ratio of pyruvate carboxylase activity relative to pyruvate dehydrogenase activity is 2.0:1. Our results show that 13C-NMR spectroscopy, using 13C-labelled substrates, is a powerful tool for the examination of renal metabolism.  相似文献   

5.
S M Cohen 《Biochemistry》1987,26(2):581-589
13C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13C enrichments at the individual carbons of glutamate when [3-13C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13C label into fatty acids was monitored in this liver preparation. Livers were perfused under steady-state conditions with labeled substrates that are converted to either [2-13C]acetyl-CoA or [1-13C]acetyl-CoA, which in the de novo synthesis pathway label alternate carbons in fatty acids. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1-13C]acetyl-CoA (from [2-13C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3-13C]alanine plus [2-13C]ethanol, which are converted to [2-13C]acetyl-CoA. Thus, measurement of 13C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

7.
At seawater temperatures below 1 degrees C, rainbow smelt (Osmerus mordax) accumulate plasma levels of glycerol up to 400 mM. Aspects of the synthesis of glycerol in liver and its regulation were previously investigated, but the pathways leading to glycerol synthesis remained unconfirmed. Here, we report nuclear magnetic resonance (NMR) studies which elucidate, in more detail, the fuel sources for rapid glycerol synthesis in rainbow smelt. Initial NMR analysis of liver homogenates from fish held at cold (-1 degrees C) temperatures and from fish transferred from 8 degrees C to -1 degrees C showed elevated glycerol, whereas those from fish held at 8 degrees C had far lower glycerol levels. These results confirm a temperature-responsive glycerol synthesis and show that NMR is a suitable approach to investigate the phenomenon. Further studies with fish held at low temperature and injected with labelled L-[2,3-(13)C(2)] alanine or D-[U-(13)C(6)]glucose revealed conversion of both alanine and glucose to glycerol. (13)C spectra showed satellites ((1)J(CC)=41.1 Hz) about the glycerol resonances indicating intact incorporation of a (13)C-(13)C unit in liver glycerol of fish injected with L-[2,3-(13)C(2)]alanine and a (13)C-(13)C-(13)C unit in liver glycerol of fish injected with D[U-(13)C(6)]glucose. Thus, glycerol can be efficiently produced directly from amino acid precursors by glyceroneogenesis, which is an abbreviated gluconeogenesis process leading to glycerol through dihydroxyacetone phosphate (DHAP). Glucose can also be metabolised to glycerol via an abbreviated form of glycolysis that similarly leads to glycerol through DHAP.  相似文献   

8.
An in situ and in vivo surface coil 13C NMR study was performed to study hepatic glycogen synthesis from [3-13C]alanine and [1-13C]glucose administered by intraduodenal infusion in 18-h fasted male Sprague-Dawley rats. Combined, equimolar amounts of alanine and glucose were given. Hepatic appearance and disappearance of substrate and concurrent glycogen synthesis was followed over 150 min, with 5-min time resolution. Active glycogen synthesis from glucose via the direct (glucose----glycogen) and indirect (glucose----lactate----glycogen) pathways and from alanine via gluconeogenesis was observed. The indirect pathway of glycogen synthesis from [1-13C]glucose accounted for 30% (+/- 6 S.E.) of total glycogen formed from labeled glucose. This estimate does not take into account dilution of label in the hepatic oxaloacetate pool and is, therefore, somewhat uncertain. Hepatic levels of [3-13C]alanine achieved were significantly lower than levels of [1-13C]glucose in the liver, and the period of active glycogen synthesis from [3-13C]alanine was longer than from glucose. However, the overall pseudo-first-order rate constant during the period of active glycogen synthesis from [3-13C]alanine (0.075 min-1 +/- 0.026 S.E.) was almost 3 times that from [1-13C]glucose via the direct pathway (0.025 min-1 +/- 0.005 S.E.). The most likely reason for the small rate constant governing direct glycogen formation from duodenally administered glucose compared to that from duodenally administered alanine is a low level of glucose phosphorylating capacity in the liver.  相似文献   

9.
Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as the carbon source; either the glucose or the fructose was [1-13C]-labelled. In order to investigate the uptake and conversion of glucose and fructose during long-term labelling experiments in cell suspensions of Daucus carota L., samples were taken every 2 d during a 2 week culture period and sucrose and starch were assayed by means of HPLC and 13C-nuclear magnetic resonance. The fructose moieties of sucrose had a lower labelling percentage than the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested to be responsible for this loss of label of especially C-1 carbons. A combination of oxidative pentose phosphate pathway activity, a relatively high activity of pathway to sucrose synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate could explain these results. Starch contained glucose units with a much lower labelling percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localized, oxidative pentose phosphate pathway was responsible for removal of C-1 carbons of the glucosyl units used for synthesis of starch. Redistribution of label from [1-13C]-hexoses to [6-13C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a consequence of cycling between hexose phosphates and those phosphates in the cytosol catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway mediated) sugar converting cycles exist in the cytosol and plastid.Key words: Daucus carotaL., cell suspensions, carbon-13 nuclear magnetic resonance, 13C-NMR, carbohydrate cycling, oxidative pentose phosphate pathway, plastid.   相似文献   

10.
A series of glutamate analogues, known as gliotoxins, are toxic to astrocytes in culture, and are inhibitors or substrates of high affinity sodium-dependent glutamate transporters. The mechanisms by which these gliotoxins cause toxicity are not fully understood. The effects of a series of gliotoxic amino acids (L-alpha-aminoadipate, L-serine-O-sulphate, D-aspartate and L-cysteate) on metabolism of [1-13C]glucose were examined in C6 glioma cells using 13C nuclear magnetic resonance (NMR) spectroscopy. The cells were preincubated in the presence of sub toxic concentrations of each gliotoxin (400 micromol/l) for 20 h. This was followed by incubation (4 h) with [1-13C]glucose (5.5 mmol/l) in the presence and absence of each gliotoxin. The incorporation of 13C label into the observed metabolites was analysed. Following preincubation with L-alpha-aminoadipate, D-aspartate, and L-serine-O-sulphate there was a significant decrease in the incorporation of 13C label into glutamate, alanine and lactate from [1-13C]glucose. In the presence of L-cysteate production of labelled glutamate was decreased, while there was no significant effect on the concentrations of labelled lactate and alanine. There was no change in the quantity of LDH released into the medium after incubation of the cells with any of the gliotoxins. Overall these results indicate that the presence of gliotoxins profoundly alters the flux of glucose to lactate, alanine, aspartate and glutamate.  相似文献   

11.
Escherichia coli were grown on 14.3% uniformly 13C-labeled glucose as the sole carbon source and challenged anaerobically with 90% 13C-labeled formaldehyde. The major multiply labeled metabolites were identified by 13C NMR spectroscopy to be glycerol and 1,2-propanediol, and a minor metabolite was shown to be 1,3-propanediol. In each case, formaldehyde is incorporated only into the C1 position. A novel form of 13C NMR isotope dilution analysis of the major products reveals that all the 1,2-diol C1 is formaldehyde derived but that about 40% of the glycerol C1 is derived from bacterial sources. Glycerokinase converted the metabolite [1-13C]glycerol to equal amounts of [3-13C]glycerol 3-phosphate and [1-13C]glycerol 3-phosphate, demonstrating that the metabolite is racemic. When [13C]formaldehyde incubation was carried out in H2O/D2O mixtures, deuterium incorporation was detected by beta- and gamma-isotope shifts. The 1,3-diol is deuterium labeled only at C2 and only once, while the 1,2-diol and glycerol are each labeled independently at both C2 and C3; C3 is multiply labeled. Deuterium incorporation levels are different for each metabolite, indicating that the biosynthetic pathways probably diverge early.  相似文献   

12.
13C-nuciear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeIed substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-l/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [l,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%. This is consistent with rapid equilibration of alanine with pyruvate derived from glucose and yet little decrease in the specific activity of the large alanine pool.  相似文献   

13.
The time courses of incorporation of 13C from 13C-labelled glucose or acetate into cerebral amino acids (glutamate, glutamine and 4-aminobutyrate) and lactate were monitored by using 13C-n.m.r. spectroscopy. When [1-13C]glucose was used as precursor the C-2 of 4-aminobutyrate was more highly labelled than the analogous C-4 of glutamate, whereas no label was observed in glutamine. A similar pattern was observed with [2-13C]glucose: the C-1 of 4-aminobutyrate was more highly labelled than the analogous C-5 of glutamate. Again, no labelling of glutamine was detected. In contrast, [2-13C]acetate labelled the C-4 of glutamine and the C-2 of 4-aminobutyrate more highly than the C-4 of glutamate; [1-13C]acetate also labelled the C-1 and C-5 positions of glutamine more than the analogous positions of glutamate. These results are consistent with earlier patterns reported from the use of 14C-labelled precursors that led to the concept of compartmentation of neuronal and glial metabolism and now provide the possibility of distinguishing differential effects of metabolic perturbations on the two pools simultaneously. An unexpected observation was that citrate is more highly labelled from acetate than from glucose.  相似文献   

14.
To clarify the unique characteristics of amino acid metabolism derived from glucose in the central nervous system (CNS), we injected [1-13C]glucose intraperitoneally to the rat, and extracted the free amino acids from several kinds of tissues and measured the amount of incorporation of13C derived from [1-13C]glucose into each amino acid using13C-magnetic resonance spectroscopy (NMR). In the adult rat brain, the intensities of resonances from13C-amino acids were observed in the following order: glutamate, glutamine, aspartate, -aminobutyrate (GABA) and alanine. There seemed no regional difference on this labeling pattern in the brain. However, only in the striatum and thalamus, the intensities of resonances from [2-13C]GABA were larger than that from [2,3-13C]aspartate. In the other tissues, such as heart, kidney, liver, spleen, muscle, lung and small intestine, the resonances from GABA were not detected and every intensity of resonances from13C-amino acids, except13C-alanine, was much smaller than those in the brain and spinal cord. In the serum,13C-amino acid was not detected at all. When the rats were decapitated, in the brain, the resonances from [1-13C]glucose greatly reduced and the intensities of resonances from [3-13C]lactate, [3-13C]alanine, [2, 3, 4-13C]GABA and [2-13C]glutamine became larger as compared with those in the case that the rats were sacrificed with microwave. In other tissues, the resonances from [1-13C]glucose were clearly detected even after the decapitation. In the glioma induced by nitrosoethylurea in the spinal cord, the large resonances from glutamine and alanine were observed; however, the intensities of resonances from glutamate were considerably reduced and the resonances from GABA and aspartate were not detected. These results show that the pattern of13C label incorporation into amino acids is unique in the central nervous tissues and also suggest that the metabolic compartmentalization could exist in the CNS through the metabolic trafficking between neurons and astroglia.Abbreviations NMR nuclear magnetic resonance - GABA -aminobutyrate - GFAP glial fibrillary acidic protein Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

15.
The non-invasive technique of 13C nuclear magnetic resonance was applied to study glucose metabolism in vivo in the insect parasite Crithidia fasciculata. It was found that under anaerobic conditions [1-13C]glucose underwent a glycolytic pathway whose main metabolic products were identified as [2-13C]ethanol, [2-13C]succinate and [1,3-13C2]glycerol. These metabolites were excreted by C. fasciculata into the incubation medium, while in the cells [3-13C]phosphoenolpyruvate was also detected in addition to the aforementioned compounds. The C3 acid is apparently the acceptor of the primary CO2 fixation reaction, which leads in Trypanosomatids to the synthesis of succinate. By addition of sodium bicarbonate to the incubation mixture L-[3-13C]malate was detected among the excretion products, while the ethanol:succinate ratio of 2.0 in the absence of bicarbonate changed to a ratio of 0.6 in the presence of the latter. This was due to a shift of the balance between carboxylation of phosphoenolpyruvate, leading to succinate, and pyruvate decarboxylation leading to ethanol. The addition of 25% 2H2O to the incubation mixture led to the formation of [2-13C, 2-2H]ethanol derived from the prior incorporation of 2H+ into pyruvate in the reactions mediated by either pyruvate kinase or malic enzyme. However, no 2H+ incorporation into L-malate was detected, excluding the possibility that the latter was formed by carboxylation of pyruvate, and lending support to the idea that L-malate results from the carboxylation of phosphoenolpyruvate to oxaloacetate by phosphoenolpyruvate carboxykinase. The formation of [2-13C, 2-2H]-succinate under the same conditions reflected the uptake of 2H+ during the reduction of fumarate. When the incubations were carried out in the presence of 100% 2H2O, several [1-13C, 1-2H]ethanol species were detected, as well as [2-13C, 2-2H]malate and [1,3-13C2, 1,3-2H2]glycerol. The former deuterated compounds reflect the existence of NAD2H species when the incubations were carried out in 100% 2H2O, while the incorporation of 2H+ into [1,3-13C2]glycerol must be attributed to the phosphoglucose-isomerase-mediated reaction during glycolysis.  相似文献   

16.
The biogenetic origin of the carbon atoms in tenellin has been established by adding 13C-enriched compounds to cultures of Beauveria bassiana, and determining the isotopic distribution in the metabolite by 13C nuclear magnetic resonance spectrometry. Tenellin is formed by condensation of an acetate-derived polyketide chain with a phenylpropanoid unit that may be phenylalanine. Alternate carbon atoms of the polyketide chain were labelled with sodium [1(-13C)]- and [2-(13C]-acetate; sodium [1,2-(13C)]acetate was incorporated as intact two-carbon units, the presence of which in tenellin was apparent from coupling between adjacent 13C-enriched carbons. Substituent methyl groups of the polyketide-derived alkenyl chain were labelled with L-[Me-13C]methionine. The labelling patterns from DL-[carboxy-13C]phenylalanine and DL-[alpha-13C]phenylalanine indicated a rearrangement of the propanoid component at some stage in the synthesis. The mass spectrum of tenellin from cultures administered L-[15N]phenylalanine showed isotopic enrichment similar to that obtained with 13C- or 14C-labelled phenylalanine. During incorporation of L-[carboxy-14C, beta-3H]phenylalanine 96% of the tritium label was lost, discounting the possibility of a 1,2-hydride shift during biosynthesis of the metabolite.  相似文献   

17.
1. Rats previously starved for 24hr. were separately given by intraduodenal injections 0.5ml. of a dispersion containing 10mg. of sodium taurocholate, with 50mg. of glycerol 1,3-dioleate 2[1-(14)C]-palmitate, glycerol 1,2-dioleate 3[1-(14)C]-palmitate, a mixture of [1-(14)C]palmitic acid and triolein, or a mixture of [1-(14)C]-palmitic acid and oleic acid. 2. At the end of 30min., the net amounts, and the radioactivity, of the neutral-lipid components recovered from the intestinal lumen and mucosa, and the position of the labelled palmitic acid in the mucosal triglycerides, were determined. 3. When glycerol 1,3-dioleate 2[1-(14)C]-palmitate was administered, most of the labelled acid was retained in the di- and monoglycerides of the lumen; the triglycerides were the major components containing the radioactivity in the mucosa and 75-80% of the labelled acid was located at the beta-position of these triglycerides. 4. When glycerol 1,2-dioleate 3[1-(14)C]-palmitate was administered, the labelled acid was readily split off in the lumen and virtually no radioactivity could be traced in the monoglyceride fraction; in the intestinal mucosa, triglycerides were again the chief components containing most of the radioactivity, and 80-85% of the labelled acid was esterified at the outer positions of the glycerol. 5. When [1-(14)C]palmitic acid mixed with triolein was administered, the concentrations of free fatty acids increased markedly in the intestinal lumen and mucosa, and 80-88% of the radioactivity of the mucosal triglycerides was located at the outer positions of the glycerol. 6. When [1-(14)C]palmitic acid mixed with oleic acid was administered, the labelled acid accumulated in the lumen as well as in the cell, and it was randomly incorporated into all three positions of the mucosal triglycerides.  相似文献   

18.
Metabolism of 13C labeled substrates viz. glucose and pyruvate in S. cerevisiae has been studied by 13C Nuclear Magnetic Resonance Spectroscopy. C3-Pyruvate, alanine and lactate, and C2-acetate are produced from [1-13C]glucose. The pyruvate, entering TCA cycle, leads to preferential labeling of C2-glutamate. [2-13C]Glucose results in labeling of C2-pyruvate, alanine and lactate. Some C3-pyruvate is also produced, indicating the routing of the label from glucose through pentose phosphate pathway (PPP). In TCA cycle the C2-pyruvate preferentially labels the C3-glutamate. The NMR spectra, obtained with [2-13C]pyruvate as substrate, confirm the above observations. These results suggest that the intermediates of TCA cycle are transferred from one enzyme active site to another in a manner that allows only restricted rotation of the intermediates. That is, the intermediates are partially channeled.  相似文献   

19.
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine L-[3-13C]alanine, or D,L-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of gamma-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courses showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of L-alanine and 60% of L-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine, alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% when labelled L-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled D,L-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.  相似文献   

20.
The metabolism of [1-13C]glucose in the vegetative mycelium of the ectomycorrhizal ascomycete Tuber borchii was studied in order to characterize the biochemical pathways for the assimilation of glucose and amino acid biosynthesis. The pathways were characterized using nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose labeling. The enzymes of mannitol cycle and ammonium assimilation were also evaluated. The majority of the 13C label was incorporated into mannitol and this polyol was formed via a direct route from absorbed glucose. Amino acid biosynthesis was also an important sink of assimilated carbon and 13C was mainly incorporated into alanine and glutamate. From this intramolecular 13C enrichment, it is concluded that pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase and pyruvate carboxylase before entering the Krebs cycle. The transfer of 13C-labeled mycelium on [12C]glucose showed that mannitol, alanine, and glutamate carbon were used to synthesize glutamine and arginine that likely play a storage role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号