首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudoachondroplasia and multiple epiphyseal dysplasia are two dominantly inherited chondrodysplasias associated with mutations in cartilage oligomeric matrix protein (COMP). The rarely available patient biopsies show lamellar inclusions in the endoplasmic reticulum. We studied the pathogenesis of these chondrodysplasias by expressing several disease-causing COMP mutations in bovine primary chondrocytes and found that COMP-associated chondrodysplasias are not exclusively storage diseases. Although COMP carrying the mutations D469Delta and D475N was retained within the endoplasmic reticulum, secretion of COMP H587R was only slightly retarded. All pseudoachondroplasia mutations impair cellular viability and cause a disruption of the extracellular matrix formed in alginate culture irrespective of the degree of cellular retention. The mutation D361Y associated with the clinically milder disease multiple epiphyseal dysplasia gave mild retention and limited matrix alterations, but the transfected cells showed normal viability. The effect of mutated COMP on matrix formation and cell-matrix interaction may be a major element in the pathogenesis of COMP-associated chondrodysplasias.  相似文献   

2.
Mutations in residues in the type 3 calcium-binding repeats and COOH-terminal globular region of cartilage oligomeric matrix protein (COMP) lead to two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. It has been hypothesized that these mutations cause COMP to misfold and to be retained in the endoplasmic reticulum. However, this hypothesis is not supported by previous reports that COMP, when purified in the presence of EDTA, shows no obvious difference in electron microscopic appearance in the presence or absence of calcium ions. Since this discrepancy may be due to the removal of calcium during purification, we have expressed wild-type COMP and the most common mutant form found in pseudoachondroplasia, MUT3, using a mammalian expression system and have purified both proteins in the presence of calcium. Both proteins are expressed as pentamers. Direct calcium binding experiments demonstrate that wild-type COMP, when purified in the presence of calcium, is a calcium-binding protein. Rotary shadowing electron microscopy and limited trypsin digestion at various calcium concentrations show that there are conformational changes associated with calcium binding to COMP. Whereas COMP exists in a more compact conformation in the presence of calcium, it shows a more extended conformation when calcium is removed. MUT3, with a single aspartic acid deletion in the type 3 repeats, binds less calcium and presents an intermediate conformation between the calcium-replete and calcium-depleted forms of COMP. In conclusion, we show that a single mutation in the type 3 repeats of COMP causes the mutant protein to misfold. Our data demonstrate the importance of calcium binding to the structure of COMP and provide a plausible explanation for the observation that mutations in the type 3 repeats and COOH-terminal globular region lead to pseudoachondroplasia.  相似文献   

3.
A 2.75-year-old Chinese boy presented with typical clinical features of pseudoachondroplasia, including disproportionate short-limb short stature, brachydactyly, genu varus and waddling gait. Radiologically, tubular bones were short with widened metaphyses, irregular and small epiphyses; anterior tonguing or beaking of vertebral bodies were characteristic. DNA sequencing analysis of the COMP gene revealed a heterozygous mutation (c.1511G>A, p.Cys504Tyr) in the patient but his parents were unaffected without this genetic change. The missense mutation (c.1511G>A) was not found in 100 healthy controls and has not been reported previously. Our findings expand the spectrum of known mutations in COMP leading to pseudoachondroplasia.  相似文献   

4.
Mutations in type 3 repeats of cartilage oligomeric matrix protein (COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We expressed recombinant wild-type COMP that showed structural and functional properties identical to COMP isolated from cartilage. A fragment encompassing the eight type 3 repeats binds 14 calcium ions with moderate affinity and high cooperativity and presumably forms one large disulfide-bonded folding unit. A recombinant PSACH mutant COMP in which Asp-469 was deleted (D469 Delta) and a MED mutant COMP in which Asp-361 was substituted by Tyr (D361Y) were both secreted into the cell culture medium of human cells. Circular dichroism spectroscopy revealed only small changes in the secondary structures of D469 Delta and D361Y, demonstrating that the mutations do not dramatically affect the folding and stability of COMP. However, the local conformations of the type 3 repeats were disturbed, and the number of bound calcium ions was reduced to 10 and 8, respectively. In addition to collagen I and II, collagen IX also binds to COMP with high affinity. The PSACH and MED mutations reduce the binding to collagens I, II, and IX and result in an altered zinc dependence. These interactions may contribute to the development of the patient phenotypes and may explain why MED can also be caused by mutations in collagen IX genes.  相似文献   

5.
Hou J  Putkey JA  Hecht JT 《Cell calcium》2000,27(6):309-314
Cartilage oligomeric matrix protein (COMP/TSP5), a large glycoprotein found in the territorial matrix surrounding chondrocytes, is the fifth member of the thrombospondin (TSP) gene family. While the function of COMP is unknown, its importance is underscored by the finding that mutations in the highly conserved type 3 repeat domain causes two skeletal dysplasias. Pseudoachondroplasia (PSACH) and Multiple Epiphyseal Dysplasia, Fairbanks type (EDM1). The type 3 repeats are highly conserved low-affinity Ca(2+)binding domains that are found in all TSP genes. This study was undertaken to determine the effects of mutations on calcium binding and structure of the type 3 repeat domains. Wild-type (WT) and Delta469 recombinant COMP (rCOMP) proteins containing the entire calcium-binding domain were expressed in E. coli and purified. Equilibrium dialysis demonstrated that WT bound 10-12 Ca(2+)ions/molecule while Delta469 bound approximately half the Ca(2+)ions. Circular dichroism (CD) spectrometry had striking spectral changes for the WT in response to increasing concentrations of Ca(2+). These CD spectral changes were cooperative and reversible. In contrast, a large CD spectral change was not observed at any Ca(2+)concentration for Delta469. Moreover, both WT and Delta469 proteins produced similar CD spectral changes when titrated with Zn(2+), Cu(2+)and Ni(2+)indicating that the Delta469 mutation specifically affects only calcium binding. These results suggest that the Delta469 mutation, in the type 3 repeat region, interferes with Ca(2+)binding and that filling of all Ca(2+)binding loops may be critical for correct COMP protein conformation.  相似文献   

6.
Cartilage oligomeric matrix protein (COMP) is a large extracellular glycoprotein that is found in the territorial matrix surrounding chondrocytes. Two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1) are caused by mutations in the calcium binding domains of COMP. In this study, we identified two PSACH mutations and assessed the effect of these mutations on redifferentiated chondrocyte structure and function. We confirmed, in vitro, that COMP is retained in enormous cisternae of the rough endoplasmic reticulum (rER) and relatively absent in the PSACH matrix. The rER accumulation may compromise chondrocyte function, leading to chondrocyte death. Moreover, while COMP appears to be deficient in the PSACH matrix, the matrix appeared to be normal but the over-all quantity was reduced. These results suggest that the abnormality in linear growth in PSACH may result from decreased chondrocyte numbers which would also affect the amount of matrix produced.  相似文献   

7.
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.  相似文献   

8.
Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype.  相似文献   

9.
The cartilage oligomeric matrix protein (COMP) and matrilins are abundant non-collagenous proteins in the cartilage extracellular matrix. In the presence of calcium, COMP and matrilin-1 elute together in the gel filtration of cartilage extracts and can be co-immunoprecipitated. In a screen for ligands of matrilin-1, -3, and -4 using an ELISA-style binding assay, COMP was identified as a prominent binding partner for all three, indicating a conservation of the COMP interaction among matrilins. The interaction of COMP and matrilin-4 is saturable, and an apparent K(D) of 1 nm was determined. However, only the full-length COMP and the full-length matrilin-4 proteins showed a strong interaction, indicating that the oligomeric structures markedly increase the affinity. Mutations in COMP or matrilin-3 cause related forms of human chondrodysplasia, and the COMP mutation D469Delta, which is found in patients with pseudoachondroplasia, has been shown to cause a reduced calcium binding. Despite this, the mutation causes only a slight decrease in matrilin-4 binding. This indicates that impaired binding of COMP to matrilins does not cause the pseudoachondroplasia phenotype but rather that matrilins may be coretained in the rough endoplasmatic reticulum where COMP accumulates in the chondrocytes of patients.  相似文献   

10.
&#x; 《Cell calcium》2000,27(6):309
Cartilage oligomeric matrix protein (COMP/TSP5), a large glycoprotein found in the territorial matrix surrounding chondrocytes, is the fifth member of the thrombospondin (TSP) gene family. While the function of COMP is unknown, its importance is underscored by the finding that mutations in the highly conserved type 3 repeat domain causes two skeletal dysplasias. Pseudoachondroplasia (PSACH) and Multiple Epiphyseal Dysplasia, Fairbanks type (EDM1). The type 3 repeats are highly conserved low-affinity Ca2+binding domains that are found in all TSP genes. This study was undertaken to determine the effects of mutations on calcium binding and structure of the type 3 repeat domains. Wild-type (WT) and Δ469 recombinant COMP (rCOMP) proteins containing the entire calcium-binding domain were expressed in E. coli and purified. Equilibrium dialysis demonstrated that WT bound 10–12 Ca2+ions/molecule while Δ469 bound approximately half the Ca2+ions. Circular dichroism (CD) spectrometry had striking spectral changes for the WT in response to increasing concentrations of Ca2+. These CD spectral changes were cooperative and reversible. In contrast, a large CD spectral change was not observed at any Ca2+concentration for Δ469. Moreover, both WT and Δ469 proteins produced similar CD spectral changes when titrated with Zn2+, Cu2+and Ni2+indicating that the Δ469 mutation specifically affects only calcium binding. These results suggest that the Δ469 mutation, in the type 3 repeat region, interferes with Ca2+binding and that filling of all Ca2+binding loops may be critical for correct COMP protein conformation.  相似文献   

11.
王晶晶  郭奕斌 《遗传》2008,30(5):537-542
假性软骨发育不全(pseudoachondroplasia, PSACH)和多发性骨骺发育不良(multiple epiphyseal dysplasia, MED)均为骨发育不良性疾病的家族成员之一, 它们的遗传方式和临床表型都具有异质性的特点, 二者均由软骨低聚物基质蛋白(cartilage oligomeric matrix protein, COMP)基因突变所致。COMP是血小板凝血酶敏感蛋白(thrombospondin, TSP)家族的成员之一, 它在骨骼的发育过程中起着重要的作用, 文章着重就COMP的结构与功能、COMP基因的突变类型、检测方法及其与两病的相关性的最新进展作一综述。  相似文献   

12.
Cartilage oligomeric matrix protein (COMP) is a large extracellular pentameric glycoprotein found in the territorial matrix surrounding chondrocytes. More than 60 unique COMP mutations have been identified as causing two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED/EDM1). Recent studies demonstrate that calcium-binding and calcium induced protein folding differ between wild type and mutant COMP proteins and abnormal processing of the mutant COMP protein causes the characteristic large lamellar appearing rough endoplasimic reticulum (rER) cisternae phenotype observed in PSACH and EDMI growth plate chondrocytes. To understand the cellular events leading to this intracellular phenotype, PSACH chondrocytes with a G427E, D469del and D511Y mutations were grown in 3-D culture to produce cartilage nodules. Each nodule was assessed for the appearance and accumulation of cartilage-specific proteins within the rER and for matrix protein synthesis. All three COMP mutations were associated with accumulation of COMP in the rER cisternae by 4 weeks in culture, and by 8 weeks the majority of chondrocytes had the characteristic cellular phenotype. Mutations in COMP also affect the secretion of type IX collagen and matrilin-3 (MATN3) but not the secretion of aggrecan and type II collagen. COMP, type IX collagen and MATN3 were dramatically reduced in the PSACH matrices, and the distribution of these proteins in the matrix was diffuse. Ultrastructural analysis shows that the type II collagen present in the PSACH matrix does not form organized fibril bundles and, overall, the matrix is disorganized. The combined absence of COMP, type IX collagen and MATN3 causes dramatic changes in the matrix and suggests that these proteins play important roles in matrix assembly.  相似文献   

13.
Mutations in cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We studied the effects of over‐expression of wild type and mutant COMP on early stages of chondrogenesis in chicken limb bud micromass cultures. Cells were transduced with RCAS virus harboring wild type or mutant (C328R, PSACH; T585R, MED) COMP cDNAs and cultured for 3, 4, and 5 days. The effect of COMP constructs on chondrogenesis was assessed by analyzing mRNA and protein expression of several COMP binding partners. Cell viability was assayed, and evaluation of apoptosis was performed by monitoring caspase 3 processing. Over‐expression of COMP, and especially expression of COMP mutants, had a profound affect on the expression of syndecan 3 and tenascin C, early markers of chondrogenesis. Over‐expression of COMP did not affect levels of type II collagen or matrilin‐3; however, there were increases in type IX collagen expression and sulfated proteoglycan synthesis, particularly at day 5 of harvest. In contrast to cells over‐expressing COMP, cells with mutant COMP showed reduction in type IX collagen expression and increased matrilin 3 expression. Finally, reduction in cell viability, and increased activity of caspase 3, at days 4 and 5, were observed in cultures expressing either wild type or mutant COMP. MED, and PSACH mutations, despite displaying phenotypic differences, demonstrated only subtle differences in their cellular viability and mRNA and protein expression of components of the extracellular matrix, including those that interact with COMP. These results suggest that COMP mutations, by disrupting normal interactions between COMP and its binding partners, significantly affect chondrogenesis. J. Cell. Physiol. 224: 817–826, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Cartilage oligomeric matrix protein (COMP) is a member of the thrombospondin family of extracellular matrix glycoproteins. All members of the family contain a highly conserved region of thrombospondin type 3 sequence repeats that bind calcium. A mutation in COMP previously identified in a patient with pseudoachondroplasia resulted in abnormal sequestration of COMP in distinctive rER vesicles. The mutation, Asp-446 --> Asn, is located in the type 3 repeats of the molecule. This region was expressed in a mammalian culture with and without the mutation to study the structural or functional properties associated with the mutation. The biophysical parameters of the mutant peptide were compared with those of the wild type and revealed the following difference: secondary structural analysis by circular dichroism showed more alpha-helix content in the wild-type peptides. The calcium binding properties of the two peptides were significantly different; there were 17 calcium ions bound/wild-type COMP3 peptide compared with 8/mutant peptide. In addition, wild-type COMP3 had a higher affinity for calcium and bound calcium more cooperatively. Calcium bound by the wild-type peptide was reflected in a structural change as indicted by velocity sedimentation. Thus, the effect of the COMP mutation appears to profoundly alter the calcium binding properties and may account for the difference observed in the structure of the type 3 domain. Furthermore, the highly cooperative binding of calcium to COMP3 suggests that these type 3 sequence repeats form a single protein domain, the thrombospondin type 3 domain.  相似文献   

15.
Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.  相似文献   

16.
Wilson disease (WD) is an autosomal recessive disorder of copper biliary excretion caused by an impaired function of ATP7B, a metal-transporting P-type ATPase encoded by WD gene. It results in copper accumulation, mostly in liver and brain tissues. Mutation analysis was carried out on 11 WD French unrelated patients presenting a predominant neurological form of this illness. SSCP and dHPLC analysis followed by sequencing of the 21 exons and their flanking introns were performed. Thirteen different mutations in a total of 17, and, among them, 10 novel variants were evidenced. Two deletions (c.654_655delCC and c.1745_1746delTA), 4 missense mutations (p.F763Y, p.G843R, p.D918A and p.L979Q), 1 nonsense mutation (p.Q1200X), 1 splice site mutation (c.1947-1G>C) and 2 intronic silent substitutions (c.2448-25G>T and c.3412+13T>A) were detected. These data extend the mutational spectrum of the disease, already known to be a very heterogeneous genetic disorder. As compared to hepatic manifestations, the phenotypes associated to these mutations confirm that neurological presentations associated with other mutations than p.H1069Q are also often late in their onset. Most of these neurological forms probably correspond to an attenuated impairment of copper metabolism, as compared to hepatic forms of the disease, mostly diagnosed earlier.  相似文献   

17.
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are autosomal dominant osteochondrodysplasias that result in mild to severe short-limb dwarfism and early-onset osteoarthrosis. PSACH and some forms of MED result from mutations in the gene for cartilage oligomeric matrix protein (COMP; OMIM 600310 [http://www3.ncbi.nlm. nih.gov:80/htbin-post/Omim/dispmim?600310]). We report the identification of COMP mutations in an additional 14 families with PSACH or MED phenotypes. Mutations predicted to result in single-amino acid deletions or substitutions, all in the region of the COMP gene encoding the calmodulin-like repeat elements, were identified in patients with moderate to severe PSACH. We also identified within this domain a missense mutation that produced MED Fairbank. In two families, one with mild PSACH and the second with a form of MED, we identified different substitutions for a residue in the carboxyl-terminal globular region of COMP. Both the clinical presentations of these two families and the identification of COMP-gene mutations provide evidence of phenotypic overlap between PSACH and MED. These data also reveal a role for the carboxyl-terminal domain in the structure and/or function of COMP.  相似文献   

18.
Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.  相似文献   

19.
Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.  相似文献   

20.
Mutations in cartilage oligomeric matrix protein (COMP) produce clinical phenotypes ranging from the severe end of the spectrum, pseudoachondroplasia (PSACH), which is a dwarfing condition, to a mild condition, multiple epiphyseal dysplasia (MED). Patient chondrocytes have a unique morphology characterized by distended rER cisternae containing lamellar deposits of COMP and other extracellular matrix proteins. It has been difficult to determine why different mutations give rise to variable clinical phenotypes. Using our in vitro cell system, we previously demonstrated that the most common PSACH mutation, D469del, severely impedes trafficking of COMP and type IX collagen in chondrocytic cells, consistent with observations from patient cells. Here, we hypothesize that PSACH and MED mutations variably affect the cellular trafficking behavior of COMP and that the extent of defective trafficking correlates with clinical phenotype. Twelve different recombinant COMP mutations were expressed in rat chondrosarcoma cells and the percent cells with ER-retained COMP was assessed. For mutations in type 3 (T3) repeats, trafficking defects correlated with clinical phenotype; PSACH mutations had more cells retaining mutant COMP, while MED mutations had fewer. In contrast, the cellular trafficking pattern observed for mutations in the C-terminal globular domain (CTD) was not predictive of clinical phenotype. The results demonstrate that different COMP mutations in the T3 repeat domain have variable effects on intracellular transport, which correlate with clinical severity, while CTD mutations do not show such a correlation. These findings suggest that other unidentified factors contribute to the effect of the CTD mutations. J. Cell. Biochem. 103: 778-787, 2008. (c) 2007 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号