首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical maps of cloned recBCD gene regions of Serratia marcescens and Proteus mirabilis were correlated to genes located in this region. The genes thyA, recC, recB, recD and argA were organized as in Escherichia coli. The 3 rec genes code for the 3 different subunits of the RecBCD enzyme and produced enzymes promoting recombination and repair of UV damage in E coli. The recBCD-dependent stimulation of recombination at specific nucleotide sequences called Chi (Chi-activation) was determined in lambda red-gam-crosses. Chi-activation by the different RecBCD enzymes decreased in the order E coli greater than S marcescens greater than P mirabilis. In E coli cloned subunits genes from S marcescens and P mirabilis led to the formation of functional hybrid enzymes consisting of subunits from 2 or even 3 species. The origin of the RecC subunit present in the hybrid enzymes affected the degree of Chi-activation. Further, changes in Chi-activation occurred when the RecD subunit in the enzyme from E coli was replaced by RecD proteins from S marcescens or P mirabilis. This suggested that the RecD subunit determines not only whether or not Chi-activation is possible but also to which extent it occurs. Finally we have reconstituted recombination pathways of S marcescens and P mirabilis by combining the cloned recA and recBCD genes from these species in E coli deleted for recA and recBCD. Both pathways can efficiently promote recombination and repair. Studies are summarized which showed that levels of repair and recombination promoted by the recA-recBCD genes are mostly higher when the recA and recBCD genes came from the same species than from 2 different species (hybrid RecBCD recombination pathway). The data are interpreted to provide evidence that in vivo the RecA protein co-operates with the RecBCD enzyme in recombination and repair of UV damage.  相似文献   

2.
3.
Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection.  相似文献   

4.
We cloned chromosomal DNA fragments from Proteus mirabilis which complement recBCD deletion mutants of Escherichia coli by restoring (i) recombination proficiency in conjugation, (ii) normal resistance to UV irradiation, and (iii) ATP-dependent exonuclease activity for duplex DNA. The data indicate that the order of the genes thyA, recC, recB, recD, and argA is similar in both P. mirabilis and E. coli. Hybrid enzymes formed in vivo were active in repair and recombination.  相似文献   

5.
Coxiella burnetii , a Gram-negative obligate intracellular pathogen, replicates within an parasitophorous vacuole with lysosomal characteristics. To understand how C. burnetii maintains genomic integrity in this environment, a database search for genes involved in DNA repair was performed. Major components of repair, SOS response and recombination were identified, including recA and ruvABC , but lexA and recBCD were absent. Instead, C. burnetii possesses addAB orthologous genes, functional equivalents to recBCD . Survival after treatment with UV, mitomycin C (MC) or methyl methanesulfonate (MMS), as well as homologous recombination in Hfr mating was restored in Escherichia coli deletion strains by C. burnetii recA or addAB . Despite the absence of LexA, co-protease activity for C. burnetii RecA was demonstrated. Dominant-negative inhibition of C. burnetii RecA by recA mutant alleles, modelled after E. coli recA1 and recA56 , was observed and more apparent with expression of C. burnetii RecAG159D mutant protein. Expression of a subset of repair genes in C. burnetii was monitored and, in contrast to the non-inducible E. coli recBCD , addAB expression was strongly upregulated under oxidative stress. Constitutive SOS gene expression due to the lack of LexA and induction of AddAB likely reflect a unique repair adaptation of C. burnetii to its hostile niche.  相似文献   

6.
A recombinant plasmid, pSM2513, containing an 8.5 kb DNA insert was isolated from a genomic library of Serratia marcescens by using interspecific complementation. This plasmid conferred resistance to methyl methanesulphonate and UV irradiation upon recA mutants of Escherichia coli and enhanced recombination proficiency, as measured by Hfr-mediated conjugation, in recA mutants of E. coli. Furthermore, when recA mutants of E. coli harbouring pSM2513 were subjected to UV irradiation, filamentation of the cells was observed. This did not occur upon UV irradiation of the same mutants harbouring the cloning vector alone. These results imply that the S. marcescens recA gene on pSM2513 is functionally similar to the E. coli recA gene in several respects. Restriction enzyme analysis and subcloning studies revealed that the S. marcescens recA gene was located on a 2.7 kb Bg/II-KpnI fragment of pSM2513, and its gene product of approximately 39 kDa resembled the E. coli RecA protein in molecular mass. Using transformation-mediated marker rescue, a recA mutant of S. marcescens was successfully constructed; its proficiency both in homologous recombination and in DNA repair was abolished compared with its parent.  相似文献   

7.
After unsuccessful attempts to recover a viable RecA-deficient mutant of the Lyme borreliosis agent Borrelia burgdorferi, we characterized the functional activities of RecA of B. burgdorferi, as well as RecA of the relapsing fever spirochete Borrelia hermsii and the free-living spirochete Leptospira biflexa, in a recA mutant of Escherichia coli. As a control, E. coli RecA was expressed from the same plasmid vector. DNA damage repair activity was assessed after exposure of the transgenic cells to UV light or the radiomimetic chemicals methyl methanesulfonate and mitomycin C. Recombination activity in the cells was assessed by using an assay for homologous recombination between repeats in the chromosome and by measuring the ability of the cells to foster lytic growth by red gam mutant bacteriophage lambda. Overall, we found that transgenic cells with recA genes of B. burgdorferi, B. hermsii, and L. biflexa had approximately equivalent activities in promoting homologous recombination in the lacZ duplication assay, but cells with B. burgdorferi recA and, most notably, B. hermsii recA were significantly less capable than cells with L. biflexa recA or E. coli recA in responding to DNA damage or in facilitating plaque formation in the phage assay. The comparatively poor function of Borrelia recA in the latter set of assays may be the consequence of impaired coordination in the loading of the transgenic RecA by RecBCD and/or RecFOR in E. coli.  相似文献   

8.
Two novel types of alleviation of DNA restriction by the EcoKI restriction endonuclease are described. The first type depends on the presence of the gam gene product (Gam protein) of bacteriophage lambda. The efficiency of plating of unmodified phage lambda is greatly increased when the restricting Escherichia coli K-12 host carries a gam+ plasmid. The effect is particularly striking in wild-type strains and, to a lesser extent, in the presence of sbcC and recA mutations. In all cases, Gam-dependent alleviation of restriction requires active recBCD genes of the host and recombination (red) genes of the infecting phage. The enhanced capacity of Gam-expressing cells to repair DNA strand breaks might account for this phenomenon. The second type is caused by the presence of a plasmid in a restricting host lacking RecBCD enzyme. Commonly used plasmids such as the cloning vector pACYC184 can produce such an effect in strains carrying recB single mutations or in recBC sbcBC strains. Plasmid-mediated restriction alleviation in recBC sbcBC strains is independent of the host RecF, RecJ, and RecA proteins and phage recombination functions. The presence of plasmids can also relieve restriction in recD strains. This effect depends, however, on the RecA function in the host. The molecular mechanism of the plasmid-mediated restriction alleviation remains unclear.  相似文献   

9.
S. L. Holbeck  G. R. Smith 《Genetics》1992,132(4):879-891
The major pathway of homologous recombination in Escherichia coli, the RecBCD pathway, is stimulated by Chi sites. To determine whether Chi enhances an early or late step in recombination, we measured formation of heteroduplex DNA (hDNA) in extracts of lambda-infected E. coli. Chi elevated hDNA levels in these extracts, supporting a role for Chi early (before hDNA formation) in recombination. RecA protein and RecBCD enzyme were both necessary for detection of hDNA, indicating that they, too, act early. Analysis of a panel of recBCD mutants indicated that Chi-nicking activity was needed for Chi's stimulation of hDNA formation. These results support a previously proposed model of recombination. Further results suggested that RecBCD enzyme has an additional role late in recombination.  相似文献   

10.
The recA genes of Proteus vulgaris, Erwinia carotovora, Shigella flexneri and Escherichia coli B/r have been isolated and introduced into Escherichia coli K-12. All the heterologous genes restore resistance to killing by UV irradiation and the mutagen 4-nitroquinoline-1-oxide in RecA- E. coli K-12 hosts. Recombination proficiency is also restored as measured by formation of Lac+ recombinants from duplicated mutant lacZ genes and the ability to propagate phage lambda derivatives requiring host recombination functions for growth (Fec-). The cloned heterologous genes increase the spontaneous induction of lambda prophage in lysogens of a recA strain. Addition of mitomycin C stimulates phage production in cells carrying the E. coli B/r and S. flexneri recA genes, but little or no stimulation is seen in cells carrying the E. carotovora and P. vulgaris recA genes. After treatment with nalidixic acid, the heterologous RecA proteins are synthesized at elevated levels, a result consistent with their regulation by the E. coli K-12 LexA repressor. Southern hybridization and preliminary restriction analysis indicate divergence among the coding sequences, but antibodies prepared against the E. coli K-12 RecA protein cross-react with the heterologous enzymes, indicating structural conservation among these proteins.  相似文献   

11.
Miranda A  Kuzminov A 《Genetics》2003,163(4):1255-1271
RecBCD is a DNA helicase/exonuclease implicated in degradation of foreign linear DNA and in RecA-dependent recombinational repair of chromosomal lesions in E. coli. The low viability of recA recBC mutants vs. recA mutants indicates the existence of RecA-independent roles for RecBCD. To distinguish among possible RecA-independent roles of the RecBCD enzyme in replication, repair, and DNA degradation, we introduced wild-type and mutant combinations of the recBCD chromosomal region on a low-copy-number plasmid into a DeltarecA DeltarecBCD mutant and determined the viability of resulting strains. Our results argue against ideas that RecBCD is a structural element in the replication factory or is involved in RecA-independent repair of chromosomal lesions. We found that RecBCD-catalyzed DNA degradation is the only activity important for the recA-independent viability, suggesting that degradation of linear tails of sigma-replicating chromosomes could be one of the RecBCD's roles. However, since the weaker DNA degradation capacity due a combination of the RecBC helicase and ssDNA-specific exonucleases restores viability of the DeltarecA DeltarecBCD mutant to a significant extent, we favor suppression of chromosomal lesions via linear DNA degradation at reversed replication forks as the major RecA-independent role of the RecBCD enzyme.  相似文献   

12.
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.  相似文献   

13.
Chi sites, 5'G-C-T-G-G-T-G-G-3', enhance homologous recombination in Escherichia coli and are activated by the RecBCD enzyme. To test the ability of Chi to be activated by analogous enzymes from other bacteria, we cloned recBCD-like genes from diverse bacteria into an E. coli recBCD deletion mutant. Clones from seven species of enteric bacteria conferred to this deletion mutant recombination proficiency, Chi hotspot activity in lambda Red- Gam- vegetative crosses, and RecBCD enzyme activities, including Chi-dependent DNA strand cleavage. Three clones from Pseudomonas aeruginosa and Ps. putida conferred recombination proficiency and ATP-dependent nuclease activity, but neither Chi hotspot activity nor Chi-dependent DNA cleavage. These results imply that Chi has been conserved as a recombination-promoting signal for RecBCD-like enzymes in enteric bacteria but not in more distantly related bacteria such as Pseudomonas spp. We discuss the possibility that other, presently unknown, nucleotide sequences serve the same function as Chi in Pseudomonas spp.  相似文献   

14.
To study the fate of linear DNA in Escherichia coli cells, we linearized plasmid DNA at a specific site in vivo and monitored its behavior in recA mutant cells deficient in recombinational repair. Earlier, we had found that in wild-type (WT) cells linearized DNA is degraded to completion by RecBCD nuclease. We had also found that in WT cells chi sites on linear DNA inhibit RecBCD degradation by turning off its nucleolytic activities. Now we report that chi sites do not work in the absence of the RecA protein, suggesting that RecA is required in vivo to turn off the degradative activities of the RecBCD enzyme. We also report that the degradation of linearized plasmid DNA, even devoid of chi sites, is never complete in recA cells. Investigation of this linear DNA stability indicates that a fraction of recA cells are recBC phenocopies due to ongoing chromosomal DNA degradation, which titrates RecBCD nuclease. A possible role for RecBCD-promoted DNA degradation in controlling chromosomal DNA replication in E. coli is discussed.  相似文献   

15.
The RecA protein is a key bacterial recombination enzyme that catalyzes pairing and strand exchange between homologous DNA duplexes. In Escherichia coli, RecA protein assembly on DNA is mediated either by the RecBCD or RecFOR protein complexes. Correspondingly, two recombination pathways, RecBCD and RecF (or RecFOR), are distinguished in E. coli. Inactivation of both pathways in recB(CD) recF(OR) mutants results in severe recombination deficiency. Here we describe a novel, RecBCD- RecFOR-independent (RecBFI) recombination pathway that is active in ΔrecBCD sbcB15 sbcC(D) ΔrecF(OR) mutants of E. coli. In transductional crosses, these mutants show only four-fold decrease of recombination frequency relative to the wild-type strain. At the same time they recombine 40- to 90-fold better than their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. The RecBFI pathway strongly depends on recA, recJ and recQ gene functions, and moderately depends on recG and lexA functions. Inactivation of dinI, helD, recX, recN, radA, ruvABC and uvrD genes has a slight effect on RecBFI recombination. After exposure to UV and gamma irradiation, the ΔrecBCD sbcB15 sbcC ΔrecF mutants show moderately increased DNA repair proficiency relative to their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. However, introduction of recA730 allele (encoding RecA protein with enhanced DNA binding properties) completely restores repair proficiency to ΔrecBCD sbcB15 sbcC ΔrecF mutants, but not to their sbcB+ sbcC+ and ΔsbcB sbcC derivatives. Fluorescence microscopy with UV-irradiated recA-gfp fusion mutants suggests that the kinetics of RecA filament formation might be slowed down in the RecBFI pathway. Inactivation of 3′-5′ exonucleases ExoVII, ExoIX and ExoX cannot activate the RecBFI pathway in ΔrecBCD ΔsbcB sbcC ΔrecF mutants. Taken together, our results show that the product of the sbcB15 allele is crucial for RecBFI pathway. Besides protecting 3′ overhangs, SbcB15 protein might play an additional, more active role in formation of the RecA filament.  相似文献   

16.
Comparison of subunit AddA of the Bacillus subtilis AddAB enzyme, subunit RecB of the Escherichia coli RecBCD enzyme, and subunit RecB of the Haemophilus influenzae RecBCD enzyme revealed several regions of homology. Whereas the first seven regions are common among helicases, the two C-terminally located regions are unique for RecB of E. coli and H. influenzae and AddA. Deletion of the C-terminal region resulted in the production of an enzyme which showed moderately impaired levels of ATP-dependent helicase activity, whereas the ATP-dependent exonuclease activity was completely destroyed. The mutant enzyme was almost completely capable of complementing E. coli recBCD and B. subtilis addAB strains with respect to DNA repair and homologous recombination. These results strongly suggest that at least part of the C-terminal region of the AddA protein is indispensable for exonuclease activity and that, in contrast to the exonuclease activity, the helicase activity of the addAB gene product is important for DNA repair and homologous recombination.  相似文献   

17.
Plasmid recombination, like other homologous recombination in Escherichia coli, requires RecA protein in most conditions. We have found that the plasmid recombination defect in a recA mutant can be efficiently suppressed by the beta protein of bacteriophage lambda. beta protein is required for homologous recombination of lambda chromosomes during lytic phage growth in a recA host and is known to have a strand-annealing activity resembling that of RecA protein. The bioluminescence recombination assay was used for genetic analysis of beta-protein-mediated plasmid recombination. Efficient suppression of the recA mutation by beta protein required the absence of the E. coli nucleases exonuclease I and RecBCD nuclease. These nucleases inhibit a RecA-mediated plasmid recombination pathway that is more efficient than the pathway functioning in wild-type cells. Like RecA-mediated plasmid recombination in RecBCD- ExoI- cells, beta-protein-mediated plasmid recombination depended on concurrent DNA replication and on the activity of the recQ gene. However, unlike RecA-mediated plasmid recombination, beta-protein-mediated recombination in RecBCD- ExoI- cells was independent of recF and recJ activities. We propose that inactivation of exonuclease I and RecBCD nuclease stabilizes a recombination intermediate that is involved in RecA- and beta-protein-catalyzed homologous pairing reactions. We suggest that the intermediate may be linear plasmid DNA with a protruding 3' end, since these nucleases are known to interfere with the synthesis of such linear forms. The different recF and recJ requirements for beta-protein-dependent and RecA-dependent recombinations imply that the mechanisms of formation or processing of the putative intermediate differ in the two cases.  相似文献   

18.
The product of the cloned recA+ gene of Proteus mirabilis substitutes for a defective recA protein in Escherichia coli recA- mutants and restores recombination, repair, and prophage induction functions to near normal levels (Eitner, G., Adler, B., Lanzov, V. A., and Hofemeister, J. (1982) Mol. Gen. Genet. 185, 481-486). In this paper, we report the purification to near homogeneity of the P. mirabilis recA protein (recApm). The polypeptide has a molecular weight similar to that of E. coli recA protein (recAec) and shows partial identity with recAec when reacted against antibodies specific for the E. coli recA protein. recApm catalyzes the hydrolysis of ATP in the presence of single-stranded but not double-stranded DNA. We have compared the recombination-like activities of recApm with those of recAec and found them to be similar. In the presence of ATP and Mg2+, stoichiometric amounts of recApm promote the complete reciprocal exchange of strands between gapped circular and linear duplex DNA molecules. The enzyme also efficiently promotes the formation of D-loops from circular duplex DNA and homologous single-stranded fragments. However, although recApm and recAec share the above physical and functional similarities, they differ in their ability to interact with the E. coli single strand binding protein to catalyze the transfer of one DNA strand from a linear duplex to a single-stranded circle.  相似文献   

19.
The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号