首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1994,126(4):1017-1029
To study the effects of microtubule-associated proteins (MAPs) on in vivo microtubule assembly, cDNAs containing the complete coding sequences of a Drosophila 205-kD heat stable MAP, human MAP 4, and human tau were stably transfected into CHO cells. Constitutive expression of the transfected genes was low in most cases and had no obvious effects on the viability of the transfected cell lines. High levels of expression, as judged by Western blots, immunofluorescence, and Northern blots, could be induced by treating cells with sodium butyrate. High levels of MAPs were maintained for at least 24-48 h after removal of the sodium butyrate. Immunofluorescence analysis indicated that all three MAPs bound to cellular microtubules, but only the transfected tau caused a rearrangement of microtubules into bundles. Despite high levels of expression of these exogenous MAPs and the bundling of microtubules in cells expressing tau, transfected cells had normal levels of assembled and unassembled tubulin. With the exception of the tau-induced bundles, microtubules in transfected cells showed the same sensitivity as control cells to microtubule depolymerization by Colcemid. Further, all three MAPs were ineffective in reversing the taxol-dependent phenotype of a CHO mutant cell line. The absence of a quantitative effect of any of these heterologous proteins on the assembly of tubulin suggests that these MAPs may have different roles in vivo from those inferred previously from in vitro experiments.  相似文献   

2.
The microtubule binding domain of tau protein   总被引:30,自引:0,他引:30  
G Lee  R L Neve  K S Kosik 《Neuron》1989,2(6):1615-1624
Tau protein is a microtubule-associated protein implicated in the spatial and temporal specification of microtubules and has been found in the neurofibrillary tangles of Alzheimer's disease. Determination of tau protein structure has revealed three 18 amino acid repeated sequences hypothesized to be tubulin binding sites. Using tau cDNA clones from human fetal brain, we employed E. coli expression systems to synthesize tau protein and fragments of tau protein in order to identify the microtubule binding site. A fragment containing the three repeated sequences binds microtubules, while the amino-terminal half of the protein does not bind. Fragments containing two or one repeat are also capable of binding, indicating that the basic tubulin interacting unit is one repeat.  相似文献   

3.
Microtubule-associated proteins (MAPs) are identified as proteins that copurify with tubulin, promote tubulin assembly, and bind to microtubules in vitro. Higher plant MAPs remain mostly unknown. One example of non-tubulin carrot proteins, which bind to neural microtubules and induce bundling, has been reported so far [Cyr, R. J., & Palewitz, B. A. (1989) Planta 177, 245-260]. Using taxol, we developed an assay where higher plant microtubules were induced to self-assemble in cytosolic extracts of maize cultured cells and were used as the native matrix to isolate putative plant MAPs. Several polypeptides with an apparent molecular masses between 170 and 32 kDa copolymerized with maize microtubules. These putative maize MAPs also coassembled with pig brain tubulin through two cycles of temperature-dependent assembly-disassembly. They were able to initiate and promote MAP-free tubulin assembly under conditions of nonefficient self-assembly and induced bundling of both plant and neural microtubules. One of these proteins, of about 83 kDa, cross-reacted with affinity-purified antibodies against rat brain tau proteins, suggesting the presence of common epitope(s) between neural tau and maize proteins. This homology might concern the tubulin-binding domain, as plant and neural tubulins are highly conserved and the plant polypeptides coassembled with brain tubulin.  相似文献   

4.
To investigate the distribution of the tau and HMW microtubule-associated proteins (MAPS) and their relationship to microtubules in vivo, we have examined a wide variety of avian and mammalian cell types by immunofluorescence with antisera to these two proteins. Anti-HMW serum stains cytoplasmic microtubules in all mammalian cell types so far examined. However, anti-tau serum did not stain cytoplasmic microtubules in rat glial cells or in pig kidney cells. In mammalian neurons, fibroblasts and neuroblastoma cells, the staining of microtubules with both sera was similar. Anti-HMW serum did not stain primary cilia or cilia on isolated tracheal epithelial cells, whereas anti-tau serum did stain these ciliary microtubules. We believe these results indicate that some types of microtubules may be associated with only the tau or the HMW protein, whereas others may be associated with both tau and HMW protein. With respect to avian cells, anti-HMW serum did not stain microtubules in any of the three cell types examined, whereas the anti-tau serum stained them in two cell types. Furthermore, double diffusion tests indicated that anti-pig tau serum will precipitate both pig brain tau and tau protein isolated from chick brain, whereas anti-HMW serum will precipitate only pig brain and not chick brain HMW protein. We believe tau protein is antigenically similar in both avian and mammalian cells, whereas the HMW protein from these two sources is antigenically distinct.  相似文献   

5.
It has been demonstrated that microtubule-associated proteins (MAPs) interact with tubulin in vitro and in vivo. However, there is no clear evidence on the possible roles of the interactions of MAPs in vivo with other cytoskeletal components in maintaining the integrity of the cell architecture. To address this question we extracted the neuronal cytoskeleton from brain cells and studied the selective dissociation of specific molecular isospecies of tau protein under various experimental conditions. Tau, and in some cases MPA-2, were analysed by the use of anti-idiotypic antibodies that recognize epitopes on their tubulin binding sites. Fractions of microtubule-bound tau isoforms were extracted with 0.35 M NaCl or after the addition of nocodazole to allow microtubule depolymerization. Protein eluted with this inhibitor contained most of the assembled tubulin dimer pool and part of the remaining tau and MAP-2. When the remaining cytoskeletal pellet was treated with cytochalasin D to allow depolymerization of actin filaments, only tau isoforms were extracted. Immunoprecipitation studies along with immunolocalization experiments in cell lines containing tau-like components supported the findings on the roles of tau isospecies as linkers between tubulin in the microtubular structure with actin filaments. Interestingly, in certain types of cells, antibody-reactive tau isospecies were detected by immunofluorescence with a discrete distribution pattern along actin filaments, which was affected by cytochalasin disruption of the actin filament network. These results suggest the possible in vivo roles of subsets of tau protein in modulating the interactions between microtubules and actin filaments.  相似文献   

6.
Tau, a microtubule-associated protein which copurifies with tubulin through successive cycles of polymerization and depolymerization, has been isolated from tubulin by phosphocellulose chromatography and purified to near homogeneity. The purified protein is seen to migrate during electrophoresis on acrylamide gels as four closely spaced bands of apparent molecular weights between 55,000 and 62,000. Specific activity for induction of microtubule formation from purified tubulin has been assayed by quantitative electron microscopy and is seen to be enhanced three- to fourfold in the purified tau when compared with the unfractionated microtubule-associated proteins. Nearly 90% of available tubulin at 1 mg/ml is found to be polymerizable into microtubules with elevated levels of tau. Moreover, the critical concentration for polymerization of the reconstituted tau + tubulin system is seen to be a function of tau concentration and may be lowered to as little as 30 μg of tubulin per ml. Under depolymerizing conditions, 50% of the tubulin at only 1 mg/ml may be driven into ring structures. A separate purification procedure for isolation of tau directly from cell extracts has been developed and data from this purification suggest that tau is present in the extract in roughly the same proportion to tubulin as is found in microtubules purified by cycles of assembly and disassembly. Tau is sufficient for both nucleation and elongation of microtubules from purified tubulin and hence the reconstituted tau + tubulin system defines a complete microtubule assembly system under standard buffer conditions. In an accompanying paper (Cleveland et al., 1977) the physical and chemical properties of tau are discussed and a model by which tau may function in microtubule assembly is presented.  相似文献   

7.
Multiple tau gene mutations are pathogenic for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), with filamentous tau aggregates as the major lesions in the CNS of these patients. Recent studies have shown that bacterially expressed recombinant tau proteins with FTDP-17 missense mutations cause functional impairments, i.e., a reduced ability of mutant tau to bind to or promote the assembly of microtubules. To investigate the biological consequences of FTDP-17 tau mutants and assess their ability to form filamentous aggregates, we engineered Chinese hamster ovary cell lines to stably express tau harboring one or several different FTDP-17 mutations and showed that different tau mutants produced distinct pathological phenotypes. For example, delta K, but not several other single tau mutants (e.g., V337 M, P301L, R406W), developed insoluble amorphous and fibrillar aggregates, whereas a triple tau mutant (VPR) containing V337M, P301L, and R406W substitutions also formed similar aggregates. Furthermore, the aggregates increased in size over time in culture. Significantly, the formation of aggregated delta K and VPR tau protein correlated with reduced affinity of these mutants to bind microtubules. Reduced phosphorylation and altered proteolysis was also observed in R406W and delta K tau mutants. Thus, distinct pathological phenotypes, including the formation of insoluble filamentous tau aggregates, result from the expression of different FTDP-17 tau mutants in transfected Chinese hamster ovary cells and implies that these missense mutations cause diverse neurodegenerative FTDP-17 syndromes by multiple mechanisms.  相似文献   

8.
Neurofibrillary tangles, a pathological hallmark of Alzheimer’s disease (AD), are somatodendritic filamentous inclusions composed of hyperphosphorylated tau. Microtubule loss is also a common feature of affected neurons in AD. However, whether and how the disruptions of microtubules and the microtubule-associated proteins occur in the pathogenesis of AD remain unclear. Recent evidence indicates that reduced expression of tubulin by knocking down a tubulin chaperon can cause tau neurotoxicity. Thus, the disruption of tubulin homeostasis may result in the acquisition of tau pathogenesis and ultimately cause tauopathy. To investigate whether the disruption of tubulin maintenance induces tau abnormalities in mammalian neurons, we developed a miRNA-mediated knockdown system of tubulin-specific chaperon E (Tbce), which is a factor required for the de novo synthesis of tubulin. Tbce knockdown in mouse primary cultured neurons induced an increase in tubulin in the cell body at 14 days in vitro. Accumulated tubulin was not acetylated or incorporated in microtubules, indicating that they were functionally inert. Concomitantly, tau also accumulated in neuronal cell bodies. The mis-localized tau was phosphorylated at Ser202/Thr205 and Ser396/Ser404. These results indicate that Tbce knockdown in mammalian neurons induces not only a reduction in properly folded tubulins, which are microtubule assembly competent, but also an accumulation of phosphorylated tau in the cell body of mammalian neurons. These findings suggest that disruption of the homeostatic mechanism for maintaining tubulin biosynthesis and/or microtubules can cause tau accumulation in the cell body, which is commonly observed in tauopathies.  相似文献   

9.
Microtubule-binding domain of tau proteins   总被引:12,自引:0,他引:12  
Limited chymotryptic digestion of whole tau proteins produced a fragment of Mr 14,000 (CT14), which was able to bind to microtubules reconstituted from tubulin alone in the presence of taxol. This fragment was also found to persist in microtubules when microtubules consisting of tau proteins and tubulin were digested by chymotrypsin. Analysis of amino acid composition revealed that CT14 was rich in lysine and proline residues, suggesting unique structure of microtubule-binding domain of tau proteins. Amino-terminal sequence of CT14 was determined to be Ser-Ser-Pro-Gly-Ser-Pro-Gly-Thr-Pro-Gly-Ser-Arg-Ser-Arg-X-Pro-Ser-Leu-Pr o. No heterogeneity was detected in this amino-terminal sequence of 19 residues. Five species of polypeptides consisting of tau proteins were separated from each other by gel electrophoresis and subjected to chymotryptic digestion. CT14 was produced from each of the tau polypeptides by chymotryptic digestion, indicating that all tau polypeptides have a common microtubule-binding domain.  相似文献   

10.
We report functional differences between tau isoforms with 3 or 4 C-terminal repeats and a difference in susceptibility to oxidative conditions, with respect to the regulation of microtubule dynamics in vitro and tau-microtubule binding in cultured cells. In the presence of dithiothreitol in vitro, a 3-repeat tau isoform promotes microtubule nucleation, reduces the tubulin critical concentration for microtubule assembly, and suppresses dynamic instability. Under non-reducing conditions, threshold concentrations of 3-repeat tau and tubulin exist below which this isoform still promotes microtubule nucleation and assembly but fails to reduce the tubulin critical concentration or suppress dynamic instability; above these threshold concentrations, amorphous aggregates of 3-repeat tau and tubulin can be produced at the expense of microtubule formation. A 4-repeat tau isoform is less sensitive to the oxidative potential of the environment, behaving under oxidative conditions similarly to the 3-repeat isoform under reducing conditions. Under conditions of oxidative stress, in Chinese hamster ovary cells stably expressing either 3- or 4-repeat tau, 3-repeat tau disassociates from microtubules more readily than the 4-repeat isoform, and tau-containing high molecular weight aggregates are preferentially observed in lysates from the Chinese hamster ovary cells expressing 3-repeat tau, indicating greater susceptibility of 3-repeat tau to oxidative conditions, compared with 4-repeat tau in vivo.  相似文献   

11.
Effect of tau on the vinblastine-induced aggregation of tubulin   总被引:3,自引:2,他引:1       下载免费PDF全文
Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the presence of vinblastine. Thus, vinblastine may be a useful probe in elucidating the individual roles of tau and MAP 2 in microtubule assembly.  相似文献   

12.
MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.  相似文献   

13.
14.
The microtubule-associated protein tau was originally identified as a protein that co-purified with tubulin in vitro, stimulated assembly of tubulin into microtubules and strongly stabilized microtubules. Recognized now as one of the most abundant axonal microtubule-associated proteins, a convergence of evidence implicates an overlapping in vivo role of tau with other axonal microtubule-associated proteins (e.g. MAP1B) in establishing microtubule stability, axon elongation and axonal structure. Missense and splice-site mutations in the human tau gene are now known to be causes of inherited frontotemporal dementia and parkinsonism linked to chromosome 17, a cognitive disorder of aging. This has provided direct evidence for the hypothesis that aberrant, filamentous assembly of tau, a frequent hallmark of a series of human cognitive diseases, including Alzheimer's disease, can directly provoke neurodegeneration.  相似文献   

15.
Tau protein function in living cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2739-2746
Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The injected tau protein increases tubulin polymerization and stabilizes microtubules against depolymerization. This increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement. Thus, tau protein acts in vivo primarily to induce tubulin assembly and stabilize microtubules, activities that may be necessary, but not sufficient, for neuronal morphogenesis.  相似文献   

16.
Microtubules were reconstituted from homogeneous brain tubulin and homogeneous preparations of two different microtubule associated proteins, the high molecular weight MAP 2 proteins or the tau proteins. The resulting microtubules were characterized by three electron microscopical procedures: Thin sectional analysis of embeded material, negative staining analysis using a STEM microscope and high resolution metal-shadowing analysis. By all three procedures MAP 2 microtubules have a much rougher surface morphology than tau microtubules, in agreement with the much higher molecular weight of the MAP 2 proteins. Tau microtubules, however, do not show the very smooth surface of microtubules assembled from pure tubulin in the absence of any microtubule associated proteins. In the case of MAP 2 microtubules thin sectional analysis as well as metal shadowing reveals that the globular protrusions seen in negative staining analysis appear as linear side arms which may extend by as much as 30 nm on both sides from the microtubular wall proper, giving rise to an overall structure with a diameter close to 100 nm. The possible implication of such structures for in vivo situations is briefly discussed as is the possibility that the "halo-effect" around microtubules seen in vivo may be due to a structural organization similar to that of MAP 2 tubules in vitro.  相似文献   

17.
18.
Proteasomal degradation of tau protein   总被引:12,自引:0,他引:12  
Filamentous inclusions composed of the microtubule-associated protein tau are a defining characteristic of a large number of neurodegenerative diseases. Here we show that tau degradation in stably transfected and non-transfected SH-SY5Y cells is blocked by the irreversible proteasome inhibitor lactacystin. Further, we find that in vitro, natively unfolded tau can be directly processed by the 20S proteasome without a requirement for ubiquitylation, and that a highly reproducible pattern of degradation intermediates is readily detectable during this process. Analysis of these intermediates shows that 20S proteasomal processing of tau is bi-directional, proceeding from both N- and C-termini, and that populations of relatively stable intermediates arise probably because of less efficient digestion of the C-terminal repeat region. Our results are consistent with an in vivo role for the proteasome in tau degradation and support the existence of ubiquitin-independent pathways for the proteasomal degradation of unfolded proteins.  相似文献   

19.
The tau family of microtubule-associated proteins has a microtubule-binding domain which includes three or four conserved sequence repeats. Pelleting assays show that when tubulin and tau are co- assembled into microtubules, the presence of taxol reduces the amount of tau incorporated. In the absence of taxol, strong binding sites for tau are filled by one repeat motif per tubulin dimer; additional tau molecules bind more weakly. We have labelled a repeat motif with nanogold and used three-dimensional electron cryomicroscopy to compare images of microtubules assembled with labelled or unlabelled tau. With kinesin motor domains bound to the microtubule outer surface to distinguish between alpha- and beta-tubulin, we show that the gold label lies on the inner surface close to the taxol binding site on beta-tubulin. Loops within the repeat motifs of tau have sequence similarity to an extended loop which occupies a site in alpha-tubulin equivalent to the taxol-binding pocket in beta-tubulin. We propose that loops in bound tau stabilize microtubules in a similar way to taxol, although with lower affinity so that assembly is reversible.  相似文献   

20.
It is well known that tau is a good in vitro substrate for Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). However, it is not clear at present whether CaM kinase II phosphorylates tau in vivo or not. Serine 416, numbered according to the longest human tau isoform, has been reported to be one of the major phosphorylation sites by CaM kinase II in vitro. In this study, we produced a specific antibody against tau phosphorylated at serine 416 (PS416-tau). Immunoblot analysis revealed that the antibody reacted with tau in the rat brain extract which was prepared in the presence of protein phosphatase inhibitors. Developmental study indicated that serine 416 was strongly phosphorylated at early developmental stages in rat brain. We examined the localization of PS416-tau in primary cultured hippocampal neurons and the immortalized GnRH neurons (GT1-7 cells), which were stably transfected with CaM kinase IIalpha cDNA. Immunostaining of these cells indicated that tau was phosphorylated mainly in neuronal soma. Interestingly, tau in neuronal soma in Alzheimer's disease (AD) brain was strongly immunostained by the antibody. These results suggest that CaM kinase II is involved in the accumulation of tau in neuronal soma in AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号