首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six RNA (pRNA) molecules form a hexamer, via hand-in-hand interaction, to gear bacterial virus phi29 DNA translocation machinery. Here we report the pathway and the conditions for the hexamer formation. Stable pRNA dimers and trimers were assembled in solution, isolated from native gels, and separated by sedimentation, providing a model system for the study of RNA dimers and trimers in a protein-free environment. Cryo-atomic force microscopy revealed that monomers displayed a check mark outline, dimers exhibited an elongated shape, and trimers formed a triangle. Dimerization of pRNA was promoted by a variety of cations including spermidine, whereas procapsid binding and DNA packaging required specific divalent cations, including Mg(2+), Ca(2+), and Mn(2+). Both the tandem and fused pRNA dimers with complementary loops designed to form even-numbered rings were active in DNA packaging, whereas those without complementary loops were inactive. We conclude that dimers are the building blocks of the hexamer, and the pathway of building a hexamer is: dimer --> tetramer --> hexamer. The Hill coefficient of 2.5 suggests that there are three binding sites with cooperative binding on the surface of the procapsid. The two interacting loops played a key role in recruiting the incoming dimer, whereas the procapsid served as the foundation for hexamer assembly.  相似文献   

2.
周辉  卢向阳  田云  黄成江 《遗传》2006,28(9):1180-1184
在噬菌体phi29中, 基因组DNA的包装需要由病毒基因组编码的pRNA参与, 6个pRNA分子通过由pRNA分子间相互作用形成的六聚体来启动DNA转运马达, 这个过程由ATP提供能量。RNA纳米技术将pRNA与siRNA、核酶、反义RNA等分子稳定结合, pRNA作为一种载体把它们准确运输到癌细胞和病毒感染细胞的作用靶点, 从而发挥它们各自的功能。作为一种非编码RNA, 对pRNA的深入研究将有助于我们了解生命起源问题, 并有着广阔的应用前景。  相似文献   

3.
During replication, the lengthy genome of double-stranded DNA viruses is translocated with remarkable velocity into a limited space within the procapsid. The question of how this fascinating task is accomplished has long been a puzzle. Our recent investigation suggests that phi29 DNA packaging is accomplished by a mechanism similar to the driving of a bolt with a hex nut and that six packaging RNAs (pRNAs) form a hexagonal complex to gear the DNA-translocating machine (Chen, C., and Guo, P. (1997) J. Virol. 71, 3864-3871; Zhang, F., Lemieux, S., Wu, X., St.-Arnaud, S., McMurray, C. T., Major, F., and Anderson, D. (1998) Mol. Cell 2, 141-147; Guo, P., Zhang, C., Chen, C., Garver, K., and Trottier, M., (1998) Mol. Cell 2, 149-155). In the current study, circularly permuted pRNAs were used to position an azidophenacyl photoreactive cross-linking agent specifically at a strategic site that was predicted to be involved in pRNA-pRNA interaction. Cross-linked pRNA dimers were isolated, and the sites of cross-link were mapped by primer extension. The cross-linked pRNA dimer retained full activity in phi29 procapsid binding and genomic DNA translocation, indicating that the cross-link distance constraints identified in dimer formation reflect the native pRNA complex. Both cross-linked dimers either containing or not containing the interlocking loops for programmed hexamer formation bound procapsid equally well; however, only the one containing the interlocking loops programmed for hexamer formation was active in phi29 DNA packaging. The cross-linked pRNA dimers were also identified as the minimum binding unit necessary for procapsid binding. Primer extension of the purified cross-linked pRNA dimers revealed that base G(82) was cross-linked to bases G(39), G(40), A(41), C(49), G(62), C(63), and C(64), which contribute to the formation of the three-way junction, suggesting that these bases are proximate in the formation of pRNA tertiary structure. Interestingly, the photoaffinity agent in the left interacting loop did not cross-link directly to the right loop as expected but cross-linked to bases adjacent to the right loop. These data provide a background for future modeling of pRNA tertiary structure.  相似文献   

4.
Fang Y  Cai Q  Qin PZ 《Biochemistry》2005,44(26):9348-9358
The phi29 packaging RNA (pRNA) is an essential component in the phi29 bacteriophage DNA packaging motor, the strongest biomolecular motor known today. Utilizing Mg2+-dependent intermolecular base pairing interactions between two 4-nucleotide loops within the pRNA procapsid binding domain, multiple copies of pRNA form a ring-shaped complex that is indispensable for packaging motor function. To understand pRNA structural organization and pRNA/pRNA interaction, studies were carried out on pRNA closed dimers, the simplest functional pRNA complex believed to be the building blocks for assembling the oligomeric ring. Tertiary folding and interactions in various pRNA mutants were evaluated based on measured closed dimer affinity that is directly linked to the proper positioning of the interacting loops. The data revealed that the procapsid binding domain contains two autonomous modules that are capable of interacting noncovalently to form a fully active species in pRNA/pRNA interaction. Deleting the 2'-hydroxyl groups in one of the interacting loops weakens the dimer affinity by 125-fold, suggesting potential tertiary interactions involving these 2'-hydroxyl groups. The results provide evidence that nonbase functional groups are involved in pRNA folding and interaction and lead to a simple model that describes the pRNA monomer configuration in terms of three arms spanning a hinge. The functional constructs developed here will aid biophysical and biochemical investigations of pRNA structure and function, as well as developments of pRNA-based technology for nanoscience and gene therapy.  相似文献   

5.
C Chen  C Zhang    P Guo 《RNA (New York, N.Y.)》1999,5(6):805-818
Translocation of DNA or RNA is a ubiquitous phenomenon. One intricate translocation process is viral DNA packaging. During maturation, the lengthy genome of dsDNA viruses is translocated with remarkable velocity into a limited space within the procapsid. We have revealed that phi29 DNA packaging is accomplished by a mechanism similar to driving a bolt with a hex nut, which consists of six DNA-packaging pRNAs. Four bases in each of the two pRNA loops are involved in RNA/RNA interactions to form a hexagonal complex that gears the DNA translocating machine. Without considering the tertiary interaction, in some cases only two G/C pairs between the interacting loops could provide certain pRNAs with activity. When all four bases were paired, at least one G/C pair was required for DNA packaging. The maximum number of base pairings between the two loops to allow pRNA to retain wild-type activity was five, whereas the minimum number was five for one loop and three for the other. The findings were supported by phylogenetic analysis of seven pRNAs from different phages. A 75-base RNA segment, bases 23-97, was able to form dimer, to interlock into the hexamer, to compete with full-length pRNA for procapsid binding, and therefore to inhibit phi29 assembly in vitro. Our result suggests that segment 23-97 is a self-folded, independent domain involved in procapsid binding and RNA/RNA interaction in dimer and hexamer formation, whereas bases 1-22 and 98-120 are involved in DNA translocation but dispensable for RNA/RNA interaction. Therefore, this 75-base RNA could be a model for structural studies in RNA dimerization.  相似文献   

6.
RNA干扰是在细胞胞质中双链RNA(dsR-NA)介导的序列特异性mRNA的降解[1]。这个过程是由21~25个被称为小干扰RNA(si RNA)形成的dsRNA完成[2]。目前,这一技术已经广泛应用于研究基因的功能,病毒感染治疗等方面。但是,si RNA在体内容易降解,干扰作用持续的时间不长。新的研究表明枯  相似文献   

7.
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg2+. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.  相似文献   

8.
DNA packaging in the bacteriophage 29 involves a molecular motor with protein and RNA components, including interactions between the viral connector protein and molecules of pRNA, both of which form multimeric complexes. Data are presented to demonstrate the higher order assembly of pRNA together with the affinity of pRNA:pRNA and pRNA:connector interactions, which are used to propose a model for motor function. In solution, pRNA can form dimeric and trimeric multimers in a magnesium-dependent manner, with dissociation constants for multimerization in the micromolar range. pRNA:connector binding is also facilitated by the presence of magnesium ions, with a nanomolar apparent dissociation constant for the interaction. From studies with a mutant pRNA, it appears that multimerization of pRNA is not essential for connector binding and it is likely that connector protein is involved in the stabilization of higher order RNA multimers. It is proposed that magnesium ions may promote conformational change that facilitate pRNA:connector interactions, essential for motor function.  相似文献   

9.
10.
Six pRNAs (p for packaging) of bacterial virus phi29 form a hexamer complex that is an essential component of the viral DNA translocating motor. Dimers, the building block of pRNA hexamer, assemble in the order of dimer --> tetramer --> hexamer. The two-dimensional structure of the pRNA monomer has been investigated extensively; however, the three-dimensional structure concerning the distance constraints of the three stems and loops are unknown. In this report, we probed the three-dimensional structure of pRNA monomer and dimer by photo affinity cross-linking with azidophenacyl. Bases 75-81 of the left stem were found to be oriented toward the head loop and proximate to bases 26-31 in a parallel orientation. Chemical modification interference indicates the involvement of bases 45-71 and 82-91 in dimer formation. Dimer was formed via hand-in-hand contact, a novel RNA dimerization that in some aspects is similar to the kissing loops of the human immunodeficiency virus. The covalently linked dimers were found to be biologically active. Both the native dimer and the covalently linked dimer were found by cryo-atomic force microscopy to be similar in global conformation and size.  相似文献   

11.
Xiao F  Moll WD  Guo S  Guo P 《Nucleic acids research》2005,33(8):2640-2649
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertexes and 12-fold connector (or the hexameric pRNA ring) represented a symmetry mismatch enabling production of a force to drive a rotation motor to translocate and compress DNA. There was a discrepancy regarding the location of the foothold for the pRNA. One model [C. Chen and P. Guo (1997) J. Virol., 71, 3864–3871] suggested that the foothold for pRNA was the connector and that the pRNA–connector complex was part of the rotor. However, one other model suggested that the foothold for pRNA was the 5-fold vertex of the capsid protein and that pRNA was the stator. To elucidate the mechanism of phi29 DNA packaging, it is critical to confirm whether pRNA binds to the 5-fold vertex of the capsid protein or to the 12-fold symmetrical connector. Here, we used both purified connector and purified procapsid for binding studies with in vitro transcribed pRNA. Specific binding of pRNA to the connector in the procapsid was found by photoaffinity crosslinking. Removal of the N-terminal 14 amino acids of the gp10 protein by proteolytic cleavage resulted in undetectable binding of pRNA to either the connector or the procapsid, as investigated by agarose gel electrophoresis, SDS–PAGE, sucrose gradient sedimentation and N-terminal peptide sequencing. It is therefore concluded that pRNA bound to the 12-fold symmetrical connector to form a pRNA–connector complex and that the foothold for pRNA is the connector but not the capsid protein.  相似文献   

12.
The intriguing process of free energy conversion, ubiquitous in all living organisms, is manifested in ATP binding and hydrolysis. ATPase activity has long been recognized to be a capability limited to proteins. However, the presence of an astonishing variety of unknown RNA species in cells and the finding that RNA has catalytic activity have bred the notion that RNA might not be excluded from the group of ATPases. All DNA-packaging motors of double-stranded DNA phages involve two nonstructural components with certain characteristics typical of ATPases. In bacterial virus phi29, one of these two components is an RNA (pRNA). Here we report that this pRNA is able to bind ATP. A comparison between the chemically selected ATP-binding RNA aptamer and the central region of pRNA reveals similarity in sequence and structure. The replacement of the central region of pRNA with the sequence from ATP-binding RNA aptamer produced chimeric aptRNA that is able to both bind ATP and assemble infectious viruses in the presence of ATP. RNA mutation studies revealed that changing only one base essential for ATP binding caused both ATP binding and viral assembly to cease, suggesting that the ATP binding motif is the vital part of the pRNA that forms a hexamer to drive the phi29 DNA-packaging motor. This is the first demonstration of a natural RNA molecule that binds ATP and the first case to report the presence of a SELEX-derived RNA aptamer in living organisms.  相似文献   

13.
The packaging RNA (pRNA) found in phi29 bacteriophage is an essential component of a molecular motor that packages the phage''s DNA genome. The pRNA forms higher-order multimers by intermolecular “kissing” interactions between identical molecules. The phi29 pRNA is a proven building block for nanotechnology and a model to explore the rare phenomenon of naturally occurring RNA self-association. Although the self-association properties of the phi29 pRNA have been extensively studied and this pRNA is used in nanotechnology, the characteristics of phylogenetically related pRNAs with divergent sequences are comparatively underexplored. These diverse pRNAs may lend new insight into both the rules governing RNA self-association and for RNA engineering. Therefore, we used a combination of biochemical and biophysical methods to resolve ambiguities in the proposed secondary structures of pRNAs from M2, GA1, SF5, and B103 phage, and to discover that different naturally occurring pRNAs form multimers of different stoichiometry and thermostability. Indeed, the M2 pRNA formed multimers that were particularly thermostable and may be more useful than phi29 pRNA for many applications. To determine if diverse pRNA behaviors are conferred by different kissing loop sequences, we designed and tested chimeric RNAs based on our revised secondary structural models. We found that although the kissing loops are essential for self-association, the critical determinant of multimer stability and stoichiometry is likely the diverse three-way junctions found in these RNAs. Using known features of RNA three-way junctions and solved structures of phi29 pRNA''s junction, we propose a model for how different junctions affect self-association.  相似文献   

14.
Shu D  Zhang H  Jin J  Guo P 《The EMBO journal》2007,26(2):527-537
Direct imaging or counting of RNA molecules has been difficult owing to its relatively low electron density for EM and insufficient resolution in AFM. Bacteriophage phi29 DNA-packaging motor is geared by a packaging RNA (pRNA) ring. Currently, whether the ring is a pentagon or hexagon is under fervent debate. We report here the assembly of a highly sensitive imaging system for direct counting of the copy number of pRNA within this 20-nm motor. Single fluorophore imaging clearly identified the quantized photobleaching steps from pRNA labeled with a single fluorophore and concluded its stoichiometry within the motor. Almost all of the motors contained six copies of pRNA before and during DNA translocation, identified by dual-color detection of the stalled intermediates of motors containing Cy3-pRNA and Cy5-DNA. The stalled motors were restarted to observe the motion of DNA packaging in real time. Heat-denaturation analysis confirmed that the stoichiometry of pRNA is the common multiple of 2 and 3. EM imaging of procapsid/pRNA complexes clearly revealed six ferritin particles that were conjugated to each pRNA ring.  相似文献   

15.
The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.  相似文献   

16.
Prohead RNA (pRNA) is an essential component of the self-assembling φ29 bacteriophage DNA packaging motor. Different related species of bacteriophage share only 12% similarity in pRNA sequences. The secondary structure for pRNA is conserved, however. In this study, we present evidence for self-assembly in different pRNA sequences and new measurements of the energetics for the quaternary interactions in pRNA dimers and trimers. The energetics for self-assembly in different pRNA sequences are similar despite very different sequences in the loop-loop interactions. The architecture surrounding the interlocking loops contributes to the stability of the pRNA quaternary interactions, and sequence variation outside the interlocking loops may counterbalance the changes in the loop sequences. Thus, the evolutionary divergence of pRNA sequences maintains not only conservation of function and secondary structure but also stabilities of quaternary interactions. The self-assembly of pRNA can be fine-tuned with variations in magnesium chloride, sodium chloride, temperature, and concentration. The ability to control pRNA self-assembly holds promise for the development of nanoparticle therapeutic applications for this biological molecule. The pRNA system is well suited for future studies to further understand the energetics of RNA tertiary and quaternary interactions, which can provide insight into larger biological assemblies such as viruses and biomolecular motors.  相似文献   

17.
A striking common feature in the maturation of all linear double-stranded DNA viruses is that their lengthy genome is translocated with remarkable velocity into the limited space within a preformed protein shell and packaged into near crystalline density. A DNA-translocating motor, powered by ATP hydrolysis, accomplishes this task, which would otherwise be energetically unfavorable. DNA-packaging RNA, pRNA, forms a hexameric complex to serve as a vital component of the DNA translocating motor of bacterial virus Phi29. The sequential action of six pRNA ensures continual function in the DNA translocation process. The Phi29 motor has been assembled with purified components synthesized by chemical or biotechnological approaches and is able to pump the viral DNA into the protein shell in vitro. pRNA dimers are the building blocks of the hexamer. The computer models of the three-dimensional structure of the motor was constructed based on experimental data derived from photoaffinity cross-linking by psoralen, phenphi (cis-Rh(1,10-phenanthroline)(9,10-phenan-threnequinone diimine)Cl(2)(+)), and azidophenacyl; chemical modification and chemical modification interference with dimethyl sulfate, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate, and kethoxal; complementary modification; and nuclease probing by single- and double-stranded specific RNases. The shapes of these computer models are very similar to the published pRNA images of cryo-atomic force microscopy. pRNA hexamer docking with the connector crystal structure reveals a very impressive match with the available biochemical, genetic, and physical data.  相似文献   

18.
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components have been well elucidated; however, studies on the role of gp16 have been seriously hampered by its hydrophobicity and self-aggregation. Such problems caused by insolubility also occur in the study of other viral DNA-packaging motors. Contradictory data have been published regarding the role and stoichiometry of gp16, which has been reported to bind every motor component, including pRNA, DNA, gp3, DNA-gp3, connector, pRNA-free procapsid, and procapsid/pRNA complex. Such conflicting data from a binding assay could be due to the self-aggregation of gp16. Our recent advance to produce soluble and highly active gp16 has enabled further studies on gp16. It was demonstrated in this report that gp16 bound to DNA non-specifically. gp16 bound to the pRNA-containing procapsid much more strongly than to the pRNA-free procapsid. The domain of pRNA for gp16 interaction was the 5'/3' paired helical region. The C18C19A20 bulge that is essential for DNA packaging was found to be dispensable for gp16 binding. This result confirms the published model that pRNA binds to the procapsid with its central domain and extends its 5'/3' DNA-packaging domain for gp16 binding. It suggests that gp16 serves as a linkage between pRNA and DNA, and as an essential DNA-contacting component during DNA translocation. The data also imply that, with the exception of the C18C19A20 bulge, the main role of the 5'/3' helical double-stranded region of pRNA is not for procapsid binding but for binding to gp16.  相似文献   

19.
The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ?29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号