共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Ruggeri G. De Luca A. Crisafulli S. Macaione R. M. Di Giorgio R. Ientile 《Journal of neurochemistry》1982,39(5):1230-1234
Abstract: S -Adenosylmethionine decarboxylase from rat retina is similar to that isolated from other rat tissues with regard to kinetic parameters. pH optimum, putrescine requirement, and sensitivity to spermine. The enzymic activity increases during the first 7 days of postnatal life but decreases until the 20th day. After this period AdoMet decarboxylase activity increases, to reach the highest values at the 90th day. This behavior suggests that such enzymic activity is responsible for spermidine and spermine levels in rat retina and that a high content of retinal spermine might have a role in the photoreceptor outer segment renewal. 相似文献
2.
Abstract: S -Adenosylmethionine is an essential ubiquitous metabolite central to many biochemical pathways, including transmethylation and polyamine biosynthesis. Reduced CSF S -adenosylmethionine levels in Alzheimer's disease have been reported; however, no information is available regarding the status of S -adenosylmethionine or S -adenosylmethionine-dependent methylation in the brain of patients with this disorder. S -Adenosylmethionine concentrations were measured in postmortem brain of 11 patients with Alzheimer's disease. We found decreased levels of S -adenosylmethionine (−67 to −85%) and its demethylated product S -adenosylhomocysteine (−56 to −79%) in all brain areas examined (cerebral cortical subdivisions, hippocampus, and putamen) as compared with matched controls (n = 14). S -Adenosylmethionine and S -adenosylhomocysteine levels were normal in occipital cortex of patients with idiopathic Parkinson's disease (n = 10), suggesting that the decreased S -adenosylmethionine levels in Alzheimer's disease are not simply a consequence of a chronic, neurodegenerative condition. Reduced S -adenosylmethionine levels could be due to excessive utilization in polyamine biosynthesis. The severe reduction in levels of this essential biochemical substrate would be expected to compromise seriously metabolism and brain function in patients with Alzheimer's disease and may provide the basis for the observations of improved cognition in some Alzheimer's patients following S -adenosylmethionine therapy. 相似文献
3.
Nahir Velez Chad A. Brautigam Margaret A. Phillips 《The Journal of biological chemistry》2013,288(7):5232-5240
Human African trypanosomiasis is caused by a single-celled protozoan parasite, Trypanosoma brucei. Polyamine biosynthesis is a clinically validated target for the treatment of human African trypanosomiasis. Metabolic differences between the parasite and the human polyamine pathway are thought to contribute to species selectivity of pathway inhibitors. S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the production of the polyamine spermidine. We previously showed that trypanosomatid AdoMetDC differs from other eukaryotic enzymes in that it is regulated by heterodimer formation with a catalytically dead paralog, designated prozyme, which binds with high affinity to the enzyme and increases its activity by up to 103-fold. Herein, we examine the role of specific residues involved in AdoMetDC activation by prozyme through deletion and site-directed mutagenesis. Results indicate that 12 key amino acids at the N terminus of AdoMetDC are essential for prozyme-mediated activation with Leu-8, Leu-10, Met-11, and Met-13 identified as the key residues. These N-terminal residues are fully conserved in the trypanosomatids but are absent from other eukaryotic homologs lacking the prozyme mechanism, suggesting co-evolution of these residues with the prozyme mechanism. Heterodimer formation between AdoMetDC and prozyme was not impaired by mutation of Leu-8 and Leu-10 to Ala, suggesting that these residues are involved in a conformational change that is essential for activation. Our findings provide the first insight into the mechanisms that influence catalytic regulation of AdoMetDC and may have potential implications for the development of new inhibitors against this enzyme. 相似文献
4.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat 总被引:3,自引:1,他引:3
Paul Cumming Hiroto Kuwabara Ariel Ase Albert Gjedde 《Journal of neurochemistry》1995,65(3):1381-1390
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3 H]DOPA. The unidirectional blood-brain clearance of [3 H]DOPA ( K D 1 ) was 0.049 ml g−1 min−1 . The relative DDC activity ( k D 3 ) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3 H]dihydroxyphenylacetic acid ([3 H]DOPAC) was formed from [3 H]DA with a rate constant of 0.013 min−1 , [3 H]homovanillic acid ([3 H]HVA) was formed from [3 H]DOPAC at a rate constant of 0.020 min−1 , and [3 H]HVA was eliminated from brain at a rate constant of 0.037 min−1 . Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D 3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA. 相似文献
5.
P. Homayoun E. B. Rodriguez de Turco N. E. Parkins D. C. Lane J. Soblosky M. E. Carey N. G. Bazan 《Journal of neurochemistry》1997,69(1):199-205
Abstract: Lipid second messengers such as arachidonic acid and its metabolites and diacylglycerols (DAGs) are affected in brain injury. Therefore, changes in the pool size and the fatty acid composition of free fatty acids (FFAs) and DAGs were analyzed in different rat brain areas 4 and 35 days after traumatic injury. Cortical impact injury of low-grade severity was applied in the right frontal somatosensory cortex. Four days after injury, FFAs and DAGs were increased by three- and twofold, respectively, in the injured cortex and to a lesser extent in the contralateral cortex compared with sham-operated animals. Docosahexaenoic acid followed by stearic acid, and arachidonic acid, displayed the greatest changes in both FFAs and DAGs. By day 35, free stearic, oleic, and arachidonic acids remained elevated in the damaged cortex (1.5-fold each). DAGs showed the greatest change, reaching values 2.7-fold higher than sham in all frontal and occipital cortical areas, including brainstem. Oleoyl- and arachidonoyl-DAGs (four- and threefold increase, respectively) followed by docosahexaenoyl-DAGs (twofold) contributed to the DAG accumulation. These results reveal that traumatic brain injury triggers a sustained and time-dependent activation of phospholipase-mediated signaling pathways leading to membrane phospholipid degradation and targeting, early on, docosahexaenoyl phospholipid-enriched excitable membranes. 相似文献
6.
Alterations in Regional Brain Catecholamine Concentrations After Experimental Brain Injury in the Rat 总被引:1,自引:0,他引:1
Abstract: Although activation of brain catecholaminergic systems has been implicated in the cerebrovascular and metabolic changes during subarachnoid hemorrhage, cerebral ischemia, cortical ablation, and cortical freeze lesions, little is known of the response of regional brain catecholamine systems to traumatic brain injury. The present study was designed to characterize the temporal changes in concentrations of norepinephrine (NE), dopamine (DA), and epinephrine (E) in discrete brain regions following experimental fluid-percussion traumatic brain injury in rats. Anesthetized rats were subjected to fluid-percussion brain injury of moderate severity (2.2–2.3 atm) and killed at 1 h, 6 h, 24 h, 1 week, and 2 weeks postinjury (n = 6 per timepoint). Control animals (surgery and anesthesia without injury) were killed at identical timepoints (n = 6 per timepoint). Tissue concentrations of NE, DA, and E were evaluated using HPLC. Following brain injury, an acute decrease was observed in DA concentrations in the injured cortex ( p < 0.05) at 1 h postinjury, which persisted up to 2 weeks postinjury. Striatal concentrations of DA were significantly increased ( p < 0.05) only at 6 h postinjury. Hypothalamic concentrations of DA and NE increased significantly beginning at 1 h postinjury ( p < 0.05 and p < 0.05, respectively) and persisted up to 24 h for DA ( p < 0.05) and 1 week ( p < 0.05) for NE. These data suggest that acute alterations occur in regional concentrations of brain catecholamines following brain trauma, which may persist for prolonged periods postinjury. 相似文献
7.
Detection of Ornithine Decarboxylase Antizyme in Mouse Brain 总被引:1,自引:4,他引:1
Oili A. Hietala 《Journal of neurochemistry》1983,40(4):1174-1177
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold. 相似文献
8.
Riccardo Ientile Grazia De Luca Rosa Maria Di Giorgio Salvatore Macaione 《Journal of neurochemistry》1988,51(3):677-682
The effect of glucocorticoids on polyamine metabolism has been elucidated further by measuring putrescine, spermidine, and spermine levels as well as ornithine decarboxylase, S-adenosylmethionine decarboxylase, and N1-acetylspermidine transferase activities in the hippocampus, cerebellar cortex, vermis, and deep nuclei of adrenalectomized rats. At 6 h after corticosterone or dexamethasone administration, the specific activities of ornithine decarboxylase and N1-acetylspermidine transferase showed the greatest increases in all brain tissues examined, and at 12 h, S-adenosylmethionine decarboxylase activity was not increased significantly. The hippocampus and cerebellar regions displayed different responses to corticosterone and dexamethasone, corresponding to the distribution of glucocorticoid and mineralocorticoid receptors. Corticosterone and dexamethasone increased ornithine decarboxylase and N1-acetylspermidine transferase activities in a dose-dependent manner, with dexamethasone being more active than corticosterone in all tissues. However, estradiol, progesterone, testosterone, and aldosterone were only active at doses greater than 5 mg/kg. The great increases in ornithine decarboxylase and N1-acetylspermidine transferase activities were accompanied by a marked increase in putrescine level and a small decrease in spermidine level. Our data confirm that the hippocampus and cerebellum are glucocorticoid target tissues and suggest that the increase in the content of putrescine, following acute treatment with glucocorticoids, is dependent on ornithine decarboxylase as well as N1-acetylspermidine transferase induction. 相似文献
9.
A. Toledo R. Rodriguez J. Sabriá J. Rodriguez I. Blanco 《Journal of neurochemistry》1991,56(2):380-384
In a previous work we have shown that histidine decarboxylase (HD) activity is found in a soluble and a membrane-bound form. A major part (82%) of the membrane-bound HD activity in the crude mitochondrial fraction (P2) was present in the synaptic plasma membrane-containing subfraction. Physiological concentrations of Ca2+ had no direct effect on HD activity but caused a solubilization of approximately 50% of membrane-bound HD in the P2 fraction. Mg2+ had similar but lower effects (20% solubilization) than Ca2+. Incubation with depolarizing concentrations of K+ in the presence of 1 mM CaCl2 caused a significant (30%) solubilization of HD. 相似文献
10.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development. 相似文献
11.
Salvatore Macaione Rosa M. Di Giorgio Piero A. Nicotina † Riccardo Ientile 《Journal of neurochemistry》1984,43(2):303-315
Abstract: The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and γ-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9–12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S -Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis. 相似文献
12.
Polyamine Metabolism in Experimental Brain Tumors of Rat 总被引:3,自引:0,他引:3
Ralf-Ingo Ernestus Gabriele Röhn Konstantin-Alexander Hossmann Wulf Paschen 《Journal of neurochemistry》1993,60(2):417-422
Abstract: Biosynthesis and accumulation of the polyamines putrescine, spermidine, and spermine are closely associated with cellular growth processes. We examined polyamine levels and the activity of their first rate-limiting enzyme, ornithine decarboxylase (ODC), in stereotactically induced experimental gliomas of the rat brain 1 and 2 weeks after implantation. Regional ODC activity and polyamine levels were determined in the tumor and in the ipsi- and contralateral striatum, white matter, and cerebral cortex. In the tumor, both ODC activity and polyamine levels markedly increased with progressive tumor growth, as compared to those in the white matter of the opposite hemisphere. In the peritumoral brain tissue, ODC activity did not change, but there was a marked increase of putrescine and, to a lesser degree, of spermidine and spermine almost throughout the whole ipsilateral hemisphere. ODC activity, therefore, seems to be a reliable marker of neoplastic growth in the brain, which may be of use for new clinical concepts of the diagnosis and therapy of brain tumors. The more diffuse distribution of polyamines, however, may be associated with the formation and spreading of edema, which would explain some of the biological effects of tumors on distant brain tissue. 相似文献
13.
Properties and Ontogenic Development of Membrane-Bound Histidine Decarboxylase from Rat Brain 总被引:2,自引:1,他引:2
A. Toledo J. Sabriá R. Rodriguez R. Brandner J. Rodriguez J. M. Palacios I. Blanco 《Journal of neurochemistry》1988,51(5):1400-1406
Abstract: Histidine decarboxylase (HD) activity was determined in high-speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates. Twenty-eight percent of the HD activity was associated with membranes, and the remaining was soluble. Several properties of the soluble and membrane-bound HD were compared. No significant differences in the values of K m for histidine and pyridoxal 5'-phosphate were observed. The solubilization of membrane-bound HD with Triton X-100 resulted in an increase of 60% over the nonsolubilized activity with no changes in the K m for substrate and cofactor. The proportion of free pyridoxal 5'-phosphate-independent activity was identical in both fractions. The soluble and membrane-bound forms of the enzyme differ slightly in their pH-activity profiles, although both enzymes showed an optimum pH near 6.5. The HD activities present in soluble and membrane fractions were determined at different postnatal ages. The soluble activity increased until day 90, whereas the membrane-bound activity became stabilized from day 20. 相似文献
14.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions. 相似文献
15.
Changes in the activity of choline kinase were measured in the cerebellum during development. Early transient increase was found in the enzyme activity just prior to and during birth. This period of increase did not coincide with the periods of transient elevation in ornithine decarboxylase and choline acetyltransferase previously observed in the developing cerebellum. The effects of the naturally occurring polyamines (putrescine, spermidine, and spermine) on choline kinase and choline acetyltransferase activities, and of phosphorylcholine (the product of the reaction catalyzed by choline kinase) on ornithine decarboxylase and choline acetyltransferase activities, were also examined. Choline acetyltransferase activity was not influenced by either polyamines or phosphorylcholine. However, choline kinase activity from 7-day-old, but not from adult, cerebellum was increased 25% in the presence of 4 mM spermine. In contrast, low spermidine concentrations (less than 2 mM) inhibited choline kinase activity selectively in 7-day-old cerebellum. Ornithine decarboxylase activity from 7-day-old cerebellum was inhibited in a concentration-dependent manner by phosphorylcholine. The present data together with other previous reports suggest that: (a) polyamines may play a role in choline utilization during development via their regulation of choline kinase activity, on the one hand, and of acetylcholinesterase activity on the other; and (b) during development, a reciprocal regulation of choline kinase and ornithine decarboxylase activities by their respective reaction products may exist, whereby choline kinase activity is regulated in a complex manner by polyamines and, in turn, ornithine decarboxylase is inhibited by phosphorylcholine. 相似文献
16.
Ornithine Decarboxylase Activity and Edema Formation in Cerebral Ischemia of Conscious Gerbils 总被引:1,自引:0,他引:1
A. Muralikrishna Rao Mustafa K. Bakaya Mary E. Maley M. Renuka Prasad Robert J. Dempsey 《Journal of neurochemistry》1995,65(6):2639-2643
Abstract: General anesthetic agents often affect the biochemical and physiologic changes triggered by cerebral ischemia. This study examined the regional activities of ornithine decarboxylase (ODC) in gerbils subjected to 5 min of bilateral carotid occlusion without anesthesia. At 2, 4, and 6 h of reperfusion, significant ODC activity was observed in both the cortex and the hippocampus. Pretreatment with α-difluoromethylornithine (DFMO) significantly blocked the ODC activity at 2, 4, and 6 h. Significant edema formation was found at 2, 4, and 6 h. At 2 h, edema formation was unaffected by administration of DFMO. However, DFMO treatment reduced later edema formation at 4 and 6 h. These results demonstrate that ODC activity and edema formation are delayed in gerbils after the induction of transient ischemia even with the removal of anesthetic agents and their potentially protective effects. These findings suggest that ODC activity and its induction of delayed cerebral edema are specific to cerebral ischemia and not to an anesthetic effect. DFMO treatment reduced both the ODC activity and edema formation, indicating a role for polyamines in postischemic edema formation. 相似文献
17.
18.
Two distinct forms of cysteine sulfinate decarboxylase (CSD), respectively, CSDI and CSDII, have already been separated in rat brain. One of them, CSDII, appeared to be closely associated with glutamate decarboxylase (GAD). We have investigated whether the taurine concentration in brain was dependent on CSDII activity in vivo. CSDI and CSDII activities were specifically measured in crude brain extracts after selective immunotrapping. After 4 days of chronic treatment of mice with gamma-acetylenic gamma-aminobutyric acid, a drastic and identical decrease in CSDII and GAD activities was observed in the brain. Taurine concentration and CSDI activities were not significantly altered. Following striato-nigral pathway lesioning in the rat brain, GAD and CSDII show an identical 80% decrease in the substantia nigra. In contrast, CSDI activity and taurine concentration in the substantia nigra were similarly but only slightly affected with an about 30% decrease. Our results provide further evidence that GAD and CSDII are indeed the same enzyme. They show that CSDII does not play any role in the biosynthesis of taurine in vivo. Our findings suggest that CSDI might be the biosynthetic enzyme for taurine in vivo and that there might be some endings projecting into the substantia nigra that contain CSDI and taurine. 相似文献
19.
For elucidation of polyamine localization and biosynthesis in various cell types of rat retina, the putrescine, spermidine, and spermine contents as well as the ornithine decarboxylase and S-adenosylmethionine decarboxylase activities have been measured in retinal cell layers obtained by the selective cytotoxic action of iodoacetate on photoreceptor cells and of monosodium glutamate on higher-order retinal neurons. A notable depletion only in spermine content was associated with loss of the visual cell layer. Total ornithine decarboxylase and S-adenosylmethionine decarboxylase activities per retina were significantly lower in all chemically fractionated tissue, but loss of the photoreceptor layer produced the greatest decrease. The specific activities of these enzymes did not show marked changes in rat retinas deprived of inner neurons. The data support the suggestions that polyamine synthesis, storage, and catabolism have different distributions in the retinal layers and that the spermine levels and the high value of the spermine/spermidine molar ratio might depend essentially on the proportion of rods to cones. 相似文献
20.
Mitsuhiro Niimi Yumiko Yamamoto Hiroshi Takemori †Atsuhiko Uno Yuki Kondo Atsushi Yamatodani 《Journal of neurochemistry》1997,69(2):851-858
Abstract: We investigated the effect of lipopolysaccharide (LPS) and various inflammatory cytokines on the histidine decarboxylase (HDC) activity in cultured cells of the rat embryonic brain. Histaminergic neuronal cell bodies were supposed to exist in cultured cells of the diencephalon but not in those of the cortex. The HDC activity was elevated by adding LPS and interleukin-1 β (IL-1β) but not by tumor necrosis factor-α (TNF-α) and IL-6 to the mixed primary cultures of diencephalon. In the adherent cell fraction of the cultured diencephalon cells, HDC activity was also enhanced by LPS and IL-1β. In a similar manner, LPS augmented HDC activity in the mixed primary culture of cerebral cortical cells and in its adherent cell fraction. The effects of IL-1β but not LPS in the mixed primary culture of diencephalon were canceled by a prior exposure to cytosine-β- d -arabinofuranoside. The changes in HDC activity after exposure to LPS for 12 h were not accompanied by increased mRNA levels. In these cell cultures, mast cells were not detected by Alcian Blue staining. These results indicated the presence of the third type of HDC-bearing cell besides neurons and mast cells in the brain. The increase of HDC activity by IL-1β might be due to cell proliferation. 相似文献