首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ~8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Bioprocess intensification can be achieved through high cell density perfusion cell culture with continuous protein capture integration. Protein passage and cell retention are commonly accomplished using tangential flow filtration systems consisting of microporous membranes. Significant challenges, including low efficiency and decaying product sieving over time, are commonly observed in these cell retention devices. Here, we demonstrate that a macroporous membrane overcomes the product sieving challenges when comparing to several other membrane chemistries and pore sizes within the microporous range. This way, variable chromatography column loading is avoided. The macroporous membrane yielded a 13,000 L/m2 volumetric throughput. The membrane's cut-off size results in an increased permeate turbidity due to particles passage, such as cell debris, through pores ranging from 1 to 4 µm. In addition, successful chromatography column plugging mitigation was achieved by employing depth filtration before the chromatographic step. Depth filtration volumetric throughputs were between 600 and 1,000 L/m2. Combing a macroporous cell retention device with a depth filter not only provided an alternative to address the challenge of undesired long protein residence times in the bioreactor due to product sieving decay, but also exhibited a throughput increase, making the integration of multicolumn capture chromatography with a perfusion cell culture a more robust process.  相似文献   

3.
Basic fibroblast growth factor (FGF‐2) is a multifunctional cytokine that regulates various cellular processes both in vitro and in vivo. FGF‐2 is extensively used in embryonic stem cell cultures since it can maintain the cells in an undifferentiated state. However, the high price of FGF‐2 has limited its application in stem cell research. Here we present a fast and efficient process for the purification of FGF‐2 from recombinant Escherichia coli cultures using reusable membrane adsorbers. A high expression level of FGF‐2 (42 mg/g dry cell) was achieved by fed‐batch cultivation of E. coli BL21(DE3). A new combination of cation exchange membrane chromatography and heparin‐sepharose affinity chromatography was used for the purification of the protein. A novel anion exchange membrane chromatography was used in the polishing step to remove endotoxins and DNA. In this new process, about 200 mg soluble FGF‐2 was yielded from 1.9 L culture broth with a purity of 98%. The purified protein was identified to be endotoxin‐free and bioactive. It was successfully tested to keep primate embryonic stem cell and human‐induced pluripotent stem cell pluripotent. Our approach, in which a controlled cultivation process is combined with an optimized fast and versatile downstreaming process, is suitable for low‐cost preparation of bioactive FGF‐2 at bench‐scale and may be beneficial to the effective production of other cytokines.  相似文献   

4.
High cell density perfusion process of antibody producing CHO cells was developed in disposable WAVE Bioreactor? using external hollow fiber filter as cell separation device. Both “classical” tangential flow filtration (TFF) and alternating tangential flow system (ATF) equipment were used and compared. Consistency of both TFF‐ and ATF‐based cultures was shown at 20–35 × 106 cells/mL density stabilized by cell bleeds. To minimize the nutrients deprivation and by‐product accumulation, a perfusion rate correlated to the cell density was applied. The cells were maintained by cell bleeds at density 0.9–1.3 × 108 cells/mL in growing state and at high viability for more than 2 weeks. Finally, with the present settings, maximal cell densities of 2.14 × 108 cells/mL, achieved for the first time in a wave‐induced bioreactor, and 1.32 × 108 cells/mL were reached using TFF and ATF systems, respectively. Using TFF, the cell density was limited by the membrane capacity for the encountered high viscosity and by the pCO2 level. Using ATF, the cell density was limited by the vacuum capacity failing to pull the highly viscous fluid. Thus, the TFF system allowed reaching higher cell densities. The TFF inlet pressure was highly correlated to the viscosity leading to the development of a model of this pressure, which is a useful tool for hollow fiber design of TFF and ATF. At very high cell density, the viscosity introduced physical limitations. This led us to recommend cell densities under 1.46 × 108 cell/mL based on the analysis of the theoretical distance between the cells for the present cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:754–767, 2013  相似文献   

5.
Continuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl2 precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.  相似文献   

6.
The natural production of patchouli oil in developing countries cannot meet the increasing demand any more. This leads to socioecological consequences, such as the use of arable land, which is actually intended for food. Hence, the world market price increased up to $150/kg. An alternative is the biotechnological production of patchouli oil using a multiproduct sesquiterpene synthase, the patchoulol synthase (PTS). Here, we report the optimization of recombinant PTS purification from Escherichia coli lysate using continuous immobilized metal affinity chromatography. First, the purification conditions of the batch process were optimized in regard to optimal buffer composition and optimized chromatographic conditions. The best purification result was achieved with Co2+-immobilized metal affinity chromatography (Sartobind® IDA 75) with a triethanolamine buffer at pH 7, 0.5 M NaCl, 10% [vol/vol] glycerol, 5 mM MgCl2 and 250 mM imidazole for product elution. This optimized method was then transferred to a continuous chromatography system using three membrane adsorber units (surface of 75 cm2 each). Within 1.5 hr in total, 4.55 mg PTS with a final purity of 98% and recovery of 68% could be gained. The purified enzyme was used to produce 126 mg/L (-)-patchoulol from farnesyl pyrophosphate. Here, for the first time bioactive PTS was successfully purified using membrane adsorbers in a continuous downstream process.  相似文献   

7.
A novel downstream bioprocess was developed to obtain purified plasmid DNA (pDNA) from Escherichia coli ferments. The intermediate recovery and purification of the pDNA in cell lysate was conducted using hollow-fiber tangential filtration and frontal anion-exchange membrane and elution hydrophobic chromatographies. The purity of the solutions of pDNA obtained during each process stage was investigated. The results show that the pDNA solution purity increased 30-fold and more than 99% of RNA in the lysate was removed during the process operations. The combination of membrane operations and hydrophobic interaction chromatography resulted in an efficient way to recover pDNA from cell lysates. A better understanding of membrane-based technology for the purification of pDNA from clarified E. coli lysate was developed in this research.  相似文献   

8.
The capture of recombinant antibodies from cell culture broth is the first critical step of downstream processing. We were able to develop a precipitation‐based method for the capture and purification of monoclonal antibodies based on divalent cations, namely ZnCl2. Traditional precipitation processes have to deal with high dilution factors especially for resolubilization and higher viscosity due to the use of PEG as precipitation or co‐precipitation agent. By the use of the crosslinking nature of divalent cations without the use of PEG, we kept viscosity from the supernatant and resolubilization dilution factors very low. This is especially beneficial for the solid–liquid separation for the harvest and wash of the precipitate in continuous mode. For this harvest and wash, we used tangential flow filtration that benefits a lot from low viscosity solutions, which minimizes the membrane fouling. With this precipitation based on ZnCl2, we were able to implement a very lean and efficient process. We demonstrated precipitation studies with three different antibodies, Adalimumab, Trastuzumab, and Denosumab, and a continuous capture case study using tangential flow filtration for precipitate recovery. In this study, we achieved yields of 70%.  相似文献   

9.
Extraction and purification of high‐value minor proteins directly from milk without pre‐treatment is a challenge for the dairy industry. Pre‐treatment of milk before extraction of proteins by conventional packed‐bed chromatography is usually necessary to prevent column blockage but it requires several steps that result in significant loss of yield and activity for many minor proteins. In this paper, we demonstrate that it is possible to pass 40–50 column volumes of various milk samples (raw whole milk, homogenized milk, skim milk and acid whey) through a 5 mL cryogel chromatographic column at 550 cm/h without exceeding its pressure limits if the processing temperature is maintained above 35°C. The dynamic binding capacity obtained for the cryogel matrix (2.1 mg/mL) was similar to that of the binding capacity (2.01 mg/mL) at equilibrium with 0.1 mg/mL of lactoferrin in the feed samples. The cryogel column selectively binds lactoferrin and lactoperoxidase with only minor leakage in flowthrough fractions. Lactoferrin was recovered from elution fractions with a yield of over 85% and a purity of more than 90%. These results, together with the ease of manufacture, low cost and versatile surface chemistry of cryogels suggest that they may be a good alternative to packed‐bed chromatography for direct capture of proteins from milk. Biotechnol. Bioeng. 2009;103: 1155–1163. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
目的:探索猪圆环病毒2型(PCV2)病毒样颗粒(VLPs)的高效组装技术,提高VLPs的稳定性。方法:利用大肠杆菌表达PCV2 Cap蛋白自组装为VLPs,分析不同离子强度下VLPs的稳定性。利用切向流技术添加尿素,降低pH,可使VLPs解组装,利用硫酸铵分级沉淀、阴离子交换层析纯化获得Cap蛋白,去除尿素,提高离子强度和pH,实现VLPs的高效再组装。结果:PCV2 Cap蛋白自组装VLPs在150mmol/L NaCl下稳定性较差,而在500mmol/L NaCl下可提高VLPs的稳定性,但仍较易发生聚集,核酸含量均较高。在150mmol/L NaCl、300mmol/L尿素和pH 5.5的缓冲体系条件下,能够使VLPs解组装。经25%~50%饱和硫酸铵(V/V)分级沉淀粗纯,阴离子交换层析500mmol/L NaCl下洗脱获得精纯Cap蛋白,蛋白质纯度≥95%,并能够有效去除核酸。通过切向流技术去除体系中的尿素,并将NaCl浓度提高至1mol/L、pH提高至8.0,改变蛋白质表面静电荷分布,实现VLPs的高效、均一再组装,组装效率≥99%,回收率为65.85%,并明显提高VLPs的稳定性,能够稳定保存6个月以上。结论:利用硫酸铵分级沉淀、阴离子交换层析纯化获得Cap蛋白,去除尿素,提高离子强度和pH,实现VLPs的高效再组装。  相似文献   

11.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

12.
The increasing commercial significance of natural polysaccharides for use in medicinal products is stimulating the development of efficient and easy scale‐up techniques for polysaccharide purification. In this research, the crude polysaccharides from submerged cultivation broth of Hypsizigus marmoreus were purified using radial flow chromatography (RFC), and the antiproliferative activity of the purified fractions was evaluated in vitro. DEAE Sepharose CL‐6B was selected to be packed in the RFC column based on its good resolution, physical stability, and low cost. Compared with axial flow chromatography (AFC), an efficient chromatographic process with significantly less time and buffer consumption but yielding higher polysaccharide recovery and resolution was established in RFC, which could clearly purify the crude polysaccharides into different fractions. An acceptable linear scale‐up effect of RFC from 100 to 500 mL was successfully achieved without loss of resolution and enhancement of time consumption. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays in cell cultures indicated that the purified polysaccharide fractions possess moderate antiproliferative activities in three different human cancer cell lines, but have significantly lower cytotoxicity in normal human cell lines in vitro. Among the polysaccharide fractions, the main purified acidic fraction W‐I could be considered as a novel potential antitumor agent candidate for several tumors, especially for human alveolar epithelial tumors. This research confirmed for the first time that RFC would be a new fast and efficient tool for purification of polysaccharides into different fractions, both at laboratory and commercial scales. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:872–878, 2014  相似文献   

13.
A continuous integrated bioprocess available from the earliest stages of process development allows for an easier, more efficient and faster development and characterization of an integrated process as well as production of small-scale drug candidates. The process presented in this article is a proof-of-concept of a continuous end-to-end monoclonal antibody production platform at a very small scale based on a 200 ml alternating tangential flow filtration perfusion bioreactor, integrated with the purification process with a model-based design and control. The downstream process, consisting of a periodic twin-column protein A capture, a virus inactivation, a CEX column and an AEX column, was compactly implemented in a single chromatography system, with a purification time of less than 4 hr. Monoclonal antibodies were produced for 17 days in a high cell density perfusion culture of CHO cells with titers up to 1.0 mg/ml. A digital twin of the downstream process was created by modelling all the chromatography steps. These models were used for real-time decision making by the implementation of control strategies to automatize and optimize the operation of the process. A consistent glycosylation pattern of the purified product was ensured by the steady state operation of the process. Regarding the removal of impurities, at least a 4-log reduction in the HCP levels was achieved. The recovery yield was up to 60%, and a maximum productivity of 0.8 mg/ml/day of purified product was obtained.  相似文献   

14.
A new bioprocess using mainly membrane operations to obtain purified plasmid DNA from Escherechia coli ferments was developed. The intermediate recovery and purification of the plasmid DNA in cell lysate was conducted using hollow-fiber tangential filtration and tandem anion-exchange membrane chromatography. The purity of the solutions of plasmid DNA obtained during each process stage was investigated. The results show that more than 97% of RNA in the lysate was removed during the process operations and that the plasmid DNA solution purity increased 28-fold. One of the main characteristics of the developed process is to avoid the use of large quantities of precipitating agents such as salts or alcohols. A better understanding of membrane-based technology for the purification of plasmid DNA from clarified E. coli lysate was developed in this research. The convenience of anion-exchange membranes, configured in ready-to-use devices can further simplify large-scale plasmid purification strategies.  相似文献   

15.
Two methods for purifying hemoglobin (Hb) from red blood cells (RBCs) are compared. In the first method, red blood cell lysate is clarified with a 50 nm tangential flow filter and hemoglobin is purified using immobilized metal ion affinity chromatography (IMAC). In the second method, RBC lysate is processed with 50 nm, 500 kDa, and 50-100 kDa tangential flow filters, then hemoglobin is purified with IMAC. Our results show that the hemoglobins from both processes produce identical Hb products that are ultrapure and retain their biophysical properties (except for chicken hemoglobin, which shows erratic oxygen binding behavior after purification). Therefore, the most efficient method for Hb purification appears to be clarification with a 50 nm tangential flow filter, followed by purification with IMAC, and sample concentration/polishing on a 10-50 kDa tangential flow filter.  相似文献   

16.
The efficient preparation of recombinant proteins at the lab-scale level is essential for drug discovery, in particular for structural biology, protein interaction studies and drug screening. The Baculovirus insect-cell expression system is one of the most widely applied and highly successful systems for production of recombinant functional proteins. However, the use of eukaryotic cells as host organisms and the multi-step protocol required for the generation of sufficient virus and protein has limited its adaptation to industrialized high-throughput operation. We have developed an integrated large-scale process for continuous and partially automated protein production in the Baculovirus system. The instrumental platform includes parallel insect-cell fermentation in 10L BioWave reactors, cell harvesting and lysis by tangential flow filtration (TFF) using two custom-made filtration units and automated purification by multi-dimensional chromatography. The use of disposable materials (bags, filters and tubing), automated cleaning cycles and column regeneration, prevent any cross-contamination between runs. The preparation of the clear cell lysate by sequential TFF takes less than 2 h and represents considerable time saving compared to standard cell harvesting and lysis by sonication and ultra-centrifugation. The process has been validated with 41 His-tagged proteins with molecular weights ranging from 20 to 160 kDa. These proteins represented several families, and included 23 members of the deubiquitinating enzyme (DUB) family. Each down-stream unit can process four proteins in less than 24 h with final yields between 1 and 100 mg, and purities between 50 and 95%.  相似文献   

17.
Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture‐based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu®) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine® sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture‐derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell‐derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM‐adsorbers were compared directly to column‐based Cellufine® sulfate and commercially available cation‐exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM‐capture step resulted in a higher reduction of dsDNA compared to the tested cation‐exchange membrane adsorbers. The productivity of the SCM‐based unit operation could be significantly improved by a 30‐fold increase in volumetric flow rate during adsorption compared to the bead‐based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell‐derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM‐adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine® sulfate. Biotechnol. Bioeng. 2009;103: 1144–1154. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.  相似文献   

19.
Efficient and economic recovery of immunoglobulins (Igs) from complex biological fluids such as serum, cell culture supernatant or fermentation cell lysate or supernatant, represents a substantial challenge in biotechnology. Methods such as protein A affinity chromatography and anion exchange chromatography are limited by cost and selectivity, respectively, while membrane chromatography is limited by low adsorptive area, flow distribution problems and scale-up difficulties. By combining the traditional salt-assisted precipitation process for selective removal of Igs from serum followed by constant-permeate flux membrane microfiltration for low fouling, we demonstrate an exciting new, efficient and economic hybrid method. The high selectivity of an ammonium sulfate-induced precipitation step was used to precipitate the Igs leaving the major undesirable impurity, the bovine serum albumin (BSA), in solution. Crossflow membrane microfiltration in diafiltration mode was then employed to retain the precipitate, while using axial flow rates to optimize removal of residual soluble BSA to the permeate. The selectivity between immunoglobulin G (IgG) and BSA obtained from the precipitation step was approximately 36, with 97% removal of the BSA with diafiltration in 5 diavolumes with resulting purity of the IgG of approximately 93% after the membrane microfiltration step. Complete resolubilization of the IgG was obtained without any aggregation at the concentrations of ammonium sulfate employed in this work. Further, membrane pore size and axial Reynolds number (recirculation rate) were shown to be important for minimizing fouling and loss of protein precipitate.  相似文献   

20.
This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete‐event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision‐making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E‐factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium‐sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed‐batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision‐making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854–866, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号