首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The relationship between microbial biomass, residues and their contribution to microbial turnover is important to understand ecosystem C storage. The effects of permanent grassland (100 % ryegrass—PG), conversion to modified grassland (mixture of grass and clover—MG) or maize monoculture (MM) on the dynamics of soil organic C (SOC), microbial biomass, fungal ergosterol and microbial residues (bacterial muramic acid and fungal glucosamine) were investigated. Cattle slurry was applied to quantify the effects of fertilisation on microbial residues and functional diversity of microbial community across land use types. Slurry application significantly increased the stocks of microbial biomass C and S and especially led to a shift in microbial residues towards bacterial tissue. The MM treatment decreased the stocks of SOC, microbial biomass C, N and S and microbial residues compared with the PG and MG treatments at 0–40 cm depth. The MM treatment led to a greater accumulation of saprotrophic fungi, as indicated by the higher ergosterol-to-microbial biomass C ratio and lower microbial biomass C/S ratio compared with the grassland treatments. The absence of a white clover population in the PG treatment caused a greater accumulation of fungal residues (presumably arbuscular mycorrhizal fungi (AMF), which do not contain ergosterol but glucosamine), as indicated by the significantly higher fungal C-to-bacterial C ratio and lower ergosterol-to-microbial biomass C ratio compared with the MG treatment. In addition to these microbial biomass and residual indices, the community level physiological profiles (CLPP) demonstrated distinct differences between the PG and MG treatments, suggesting the potential of these measurements to act as an integrative indicator of soil functioning.  相似文献   

2.
沼液部分替代化肥在日光温室秋番茄上的应用效果   总被引:1,自引:0,他引:1  
为探索沼液和化肥协同促生的效果,以3种常见禽畜粪便(鸭粪、猪粪、牛粪)作为发酵原料的沼液为母液,以氮磷钾镁肥作为化学肥料辅助,平衡不同稀释比例之间的养分差异,研究沼液配施对番茄生长发育的影响. 结果表明: 沼液部分替代化肥可以显著改善土壤速效氮、磷、钾的肥力状况,依发酵原料和稀释比例不同,沼液对土壤水溶性钙、镁和有效铁、锰、铜、锌有不同程度的活化作用. 与完全施用化肥相比,沼液配施化肥可显著促进番茄生长,且随生育期的延长,沼液的促生作用愈发凸显,最终增产幅度达55.9%~232.8%,化肥用量减少18.2%~85.0%;番茄果实品质显著改善,番茄红素、Vc、总糖含量均显著提高,果实酸度显著降低,NO2-降幅达35.6%~90.3%,而口感得分比化肥处理高出7.0%~20.3%.相关分析发现,番茄产量和品质呈非线性关系,口感与糖酸比呈显著正相关,番茄果实口感受肥料种类的影响亦显著. 总之,沼液配施化肥用于番茄生产可以实现高产、优质、环保、培肥和资源高效利用的目的.  相似文献   

3.
低温沼气发酵优良菌系筛选及优势菌群分析   总被引:2,自引:0,他引:2  
【目的】为获得低温沼气发酵高效菌系, 从张家口、承德和邯郸地区采集低温产气良好的沼气池中沼泥样品12份。【方法】以沼泥为接种源进行16 °C?5 °C阶段降温模拟沼气发酵试验, 对处理组HL2、ZG2、CW1及其相应的接种源HLA、ZGB、CWB进行DGGE分析。【结果】ZG2处理组模拟沼气发酵综合性能最优, 与其他处理组呈显著性差异; DGGE图谱显示, 被检测样品中古菌种属多样性丰富, 但图谱中代表优势种属条带的位置存在较大差异。通过16S rDNA克隆及测序分析, 样品中主要优势菌属为甲烷八叠球菌属、甲烷鬃毛菌属和甲烷粒菌属。【结论】DGGE图谱中代表甲烷八叠球菌属的条带是样品ZG2和ZGB中唯一重复出现的条带, 且未作为优势条带出现在其他样品中, 推测甲烷八叠球菌属与低温产沼气有密切相关性。  相似文献   

4.
In the Darmstadt long-term fertilization trial, the application of composted cattle farmyard manure without (CM) and with (CMBD) biodynamic preparations was compared to mineral fertilization with straw return (MIN). The present study was conducted to investigate the effects of spatial variability, especially of soil pH in these three treatments, on soil organic matter and soil microbial biomass (C, N, P, S), activity (basal CO2 production and O2 consumption), and fungal colonization (ergosterol). Soil pH was significantly lower in the MIN treatments than in the organic fertilizer treatments. In the MIN treatments, the contents of soil organic C and total N were also significantly lower (13% and 16%, respectively) than those of the organic fertilizer treatments. In addition, the total S content increased significantly in the order MIN < CM < CMBD. The microbial biomass C content was significantly lower (9%) in the MIN treatments than in the organic fertilizer treatments. Microbial biomass N and biomass P followed microbial biomass C, with a mean C/N ratio of 7.9 and a mean C/P ratio of 23. Neither the microbial biomass C to soil organic C ratio, the metabolic quotient qCO2, nor the respiratory quotient (mol CO2/mol O2) revealed any clear differences between the MIN and organic fertilizer treatments. The mean microbial biomass S content was 50% and the mean ergosterol content was 40% higher in the MIN treatments compared to the organic fertilizer treatments. The increased presence of saprotrophic fungi in the MIN treatments was indicated by significantly increased ratios of ergosterol-to-microbial biomass C and the microbial biomass C/S ratio. Our results showed that complex interactions between the effects of fertilizer treatments and natural heterogeneity of soil pH existed for the majority of microbial biomass and activity indices.  相似文献   

5.
沼液还田对旱地红壤微生物群落代谢与多样性的影响   总被引:5,自引:0,他引:5  
郑学博  樊剑波  崔键  徐磊  祝振球  周静  何园球 《生态学报》2016,36(18):5865-5875
通过沼液还田定位实验,按照不同沼液全氮还田比例设6个等氮量(N-P_2O_5-K_2O量均为120-90-135 kg/hm~2(对照除外))处理:对照(不施肥,CK)、100%化学氮(NPK)、15%沼液氮+85%化学氮(BS15)、30%沼液氮+70%化学氮(BS30)、45%沼液氮+55%化学氮(BS45)和100%沼液氮(BS100),运用Biolog-ECO技术分析0—20cm花生收获期土壤微生物群落代谢功能多样性,阐明微生物群落代谢与沼液还田量的相关关系。结果表明:①BS45、BS30处理土壤微生物群落碳源代谢强度(AWCD)显著高于CK和NPK处理;而BS15、BS100处理土壤微生物群落碳源代谢强度(AWCD)与CK和NPK处理则无显著差异;②土壤微生物群落碳源代谢强度(AWCD)、丰富度指数、Shannon指数、Simpson优势度指数均表现为BS45BS30NPKCKBS100BS15;③结合主成分分析和聚类分析,表明各处理土壤微生物群落功能多样性分为4组:BS45、BS30处理为一组,微生物群落代谢活性最强,特别是碳水化合物、氨基酸、聚合物和胺类等碳源的代谢能力;NPK、CK、BS100处理为一组,微生物群落代谢活性次之;BS15处理为一组,微生物群落代谢能力最低,其碳水化合物、羧酸、氨基酸、聚合物、酚类和胺类等碳源的代谢能力均为最低。结合主成分分析综合得分,土壤微生物群落代谢和多样性的顺序为BS45BS30NPKCKBS100BS15。可见,沼液还田显著影响旱地红壤微生物群落的代谢活性和多样性,沼液不能完全替代化肥,当沼液全氮还田比例在30%—45%时,微生物群落代谢活性最强,有利于土壤质量提高,适于在我国旱地红壤地区推广。  相似文献   

6.
沼气发酵残余物应用于金丝小枣栽培的初步研究   总被引:10,自引:0,他引:10  
通过田间试验比较了沼气发酵残余物(沼渣和沼液)和化肥对金丝小枣部分形态特征、土壤肥力和果实品质等的影响.结果表明,施用沼渣和沼液能显著增强植株和枣果抗病、抗逆能力;改良土壤肥力状况,有机碳、总氮和矿质氮分别比化肥组对照高42.65%、37.61%和35.26%;降低土壤碱度,土壤pH值由875下降到821;增加土壤微生物量,微生物碳和氮量分别比对照高59.44%和56.06%;提高果实品质,其中粗纤维、维生素C、总氨基酸、微量元素铁和磷的含量分别比对照高27.69%、24.85%、19.81%、10.89%和5.26%.表明将沼气发酵残余物应用于金丝小枣栽培能给枣农带来良好的经济收益和环境效益,为金丝小枣的无公害生产提供了新思路.  相似文献   

7.
In present study, potentials of water hyacinth (Eichhornia crassipes) and water chestnut (Trapa bispinnosa) employed for phytoremediation of toxic metal rich brass and electroplating industry effluent, were examined in terms of biogas generation. Inability of the plants to grow in undiluted effluent directed to select 20%, 40% and 60% effluent concentrations (with deionized water) for phytoremediation experiments. Slurry of both the plants used for phytoremediation produced significantly more biogas than that by the control plants grown in unpolluted water; the effect being more pronounced with plants used for phytoremediation of 20% effluent. Maximum cumulative production of biogas (2430c.c./100gdm of water hyacinth and 1940c.c./100gdm of water chest nut) and per cent methane content (63.82% for water hyacinth and 57.04% for water chestnut) was observed at 5mm particle size and 1:1 substrate/inoculum ratio, after twenty days incubation. Biogas production was quicker (maximum from 8-12days) in water hyacinth than in water chestnut (maximum from 12-16days). The qualitative and quantitative variations in biogas production were correlated with COD, C, N, C/N ratio and toxic metal contents of the slurry used.  相似文献   

8.
The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from wastewater for their metabolic use. Slurry of the two plants used for phytoremediation produced significantly more biogas than that produced by the plants grown in deionized water; the effect being more marked with plants used for phytoremediation of 20% pulp and paper mill effluent. Biogas production from channel grass was relatively greater and quicker (maximum in 6-9 days) than that from water hyacinth (in 9-12 days). Such variation in biogas production by the two macrophytes has been correlated with the changes in C, N and C/N ratio of their slurry brought by phytoremediation.  相似文献   

9.
Biotechnological intensification of biogas production   总被引:1,自引:0,他引:1  
The importance of syntrophic relationships among microorganisms participating in biogas formation has been emphasized, and the regulatory role of in situ hydrogen production has been recognized. It was assumed that the availability of hydrogen may be a limiting factor for hydrogenotrophic methanogens. This hypothesis was tested under laboratory and field conditions by adding a mesophilic (Enterobacter cloacae) or thermophilic hydrogen-producing (Caldicellulosyruptor saccharolyticus) strain to natural biogas-producing consortia. The substrates were waste water sludge, dried plant biomass from Jerusalem artichoke, and pig manure. In all cases, a significant intensification of biogas production was observed. The composition of the generated biogas did not noticeably change. In addition to being a good hydrogen producer, C. saccharolyticus has cellulolytic activity; hence, it is particularly suitable when cellulose-containing biomass is fermented. The process was tested in a 5-m3 thermophilic biogas digester using pig manure slurry as a substrate. Biogas formation increased at least 160–170% upon addition of the hydrogen-producing bacteria as compared to the biogas production of the spontaneously formed microbial consortium. Using the hydrogenase-minus control strain provided evidence that the observed enhancement was due to interspecies hydrogen transfer. The on-going presence of C. saccharolyticus was demonstrated after several months of semicontinuous operation.  相似文献   

10.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

11.
The methanogen community in biogas reactor running on cattle dung was investigated in two different seasons; summer (April, 36 °C) and winter (December, 24 °C), in the year 2004 by a culture-independent approach. Community structure was determined by phylogenetic analyses of 343 and 278 mcrA clones belonging to summer and winter month libraries, respectively. In summer month’s library, 41.7% clones were affiliated to Methanomicrobiales, 30% to Methanosarcinales, 19% to Methanobacteriales, 5% to Methanococcales and a total of 4.3% clones belonged to unclassified euryarchaeotal lineages. In winter month’s library, Methanomicrobiales encompassed 98.6% clones, and Methanobacteriales included 1.4% of total clone diversity. Biogas plant performance data collected during the winter month indicated significant reduction in daily biogas produced as compared to summer month because of lowering in ambient temperature and associated shift in microbial community. Results from this molecular study showed the existence of highly diverse and complex methanogens communities present in biogas plant.  相似文献   

12.
Kaolin is an important industrial raw material and a basis of a range of different products. Microbial spoilage is a detrimental process observed especially in kaolin slurries, leading to low quality products and economic loss. Although the alteration of kaolin slurries in ceramic industry was observed, the process and the microbial background have not been analyzed in details. This study provides the first data using a cultivation independent molecular biological approach (PCR-DGGE) regarding the bacterial composition of an altered kaolin slurry. The results show that potential exopolymer (EPS) producer bacteria (e.g. Acinetobacter, Pseudomonas) appear in the altered kaolin slurry, which may have an important role in the modification of kaolin slurries.  相似文献   

13.
Soil microbial communities follow distinct seasonal cycles which result in drastic changes in processes involving soil nutrient availability. The biomass of fungi has been reported to be highest during winter, but is fungal growth really occurring in frozen soil? And what is the effect of plant cover on biomass formation and on the composition of fungal communities? To answer these questions, we monitored microbial biomass N, ergosterol, and the amount of fungal hyphae during summer and winter in vegetated and unvegetated soils of an alpine primary successional habitat. The winter fungal communities were identified by rDNA ITS clone libraries. Winter soil temperatures ranged between -0.6°C and -0.1°C in snow-covered soil. We found distinct seasonal patterns for all biomass parameters, with highest biomass concentrations during winter in snow-covered soil. The presence of plant cover had a significant positive effect on the amount of biomass in the soil, but the type of plant cover (plant species) was not a significant factor. A mean hyphal ingrowth of 5.6 m g(-1) soil was detected in snow-covered soil during winter, thus clearly proving fungal growth during winter in snow-covered soil. Winter fungal communities had a typical species composition: saprobial fungi were dominating, among them many basidiomycete yeasts. Plant cover had no influence on the composition of winter fungal communities.  相似文献   

14.
Ammonia (NH(3)) volatilization decreases the N-nutrient value of livestock manure slurries and can lead to soil acidification and eutrophication problems. In this study the effect of three manure additives (Euro Mest-mix (Mx), Effective Micro-organisms (EM), and Agri-mest (Am)) on NH(3) volatilization at three temperatures (4, 20, and 35 degrees C) was investigated. The manufacturers claim that Mx contains absorbing clay minerals and that applying Am and EM to slurry will reduce nitrogen losses, most likely by enhancing the biodegradation of manure slurry. Furthermore, the effect of mixing slurry on NH(3) volatilization has been investigated. Ammonia volatilization increased with increasing temperature and mixing of the slurries. However, at 35 degrees C mixing of manure reduced NH(3) emissions compared to non-mixing, which is related to a reduced crust resistance to gaseous transport at higher temperatures for non-mixing. Moreover, mixing introduces oxygen into the anaerobic slurry environment which will slow down microbial activity. The use of additives did not change manure characteristics (pH, dry matter, N(total), N(mineral), C/N, and C/N(organic)) and did not result in a significant (p<0.05) decrease in NH(3) emissions, except that at 4 degrees C and no mixing a significant decrease of 34% in NH(3) volatilization was observed, when Am and EM together, were applied to slurry.  相似文献   

15.
It has been established that substantial amounts of fungal mass accumulate in standing decaying smooth cordgrass (Spartina alterniflora) marshes in the southeastern United States (e.g., in standing decaying leaf blades with a total fungal organic mass that accounts for about 20% of the decay system organic mass), but it has been hypothesized that in marshes farther north this is not true. We obtained samples of autumnal standing decaying smooth cordgrass from sites in Florida to Maine over a 3-year period. The variation in latitude could not explain any of the variation in the living fungal standing crop (as determined by ergosterol content) or in the instantaneous rates of fungal growth (as determined by acetate incorporation into ergosterol at a standard temperature, 20 degrees C), which led to the conclusion that the potential levels of fungal production per unit of naturally decaying grass are not different in northern and southern marshes. Twenty-one percent of the variation in the size of the living fungal standing crop could be explained by variation in the C/N ratio (the higher the C/N ratio the smaller the fungal crop), but the C/P ratio was not related to the size of the fungal crop. Instantaneous rates of fungal growth were negatively related to the size of the living fungal crop (r = -0.35), but these rates were not correlated with C/nutrient ratios. The same two predominant species of ascomycetes (one Phaeosphaeria species and one Mycosphaerella species) were found ejecting ascospores from standing decaying smooth cordgrass blades at all of the sites examined from Florida to Maine.  相似文献   

16.
Dewatered sewage sludge was thermochemically liquidized at 175°C and the liquidized sludge was separated by centrifugation to 57.7% (w/w) supernatant [moisture, 92.3%; volatile solid (VS), 7.0%] and 42.3% precipitate (moisture, 71.6%; VS, 18.9%). The supernatant was successfully anaerobically digested. Biogas yield from the supernatant at organic loading concentrations of 1.9–2.2 g VS/l during 9 days' incubation was 440 ml/g-added VS and digestion ratio was 66% (w/w). Biogas yield in the case of dewatered sewage sludge was 257% ml/g-added VS and digestion ratio was 45%. Digestion of the supernatant resulted in high biogas productivity and a high digestion ratio compared with that of the dewatered sewage sludge. Moreover, it was suggested that the precipitate can be incinerated without the need for any supplemental fuel.  相似文献   

17.
Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation.  相似文献   

18.
运用磷脂脂肪酸(phospholipid fatty acid,PLFA)和Biolog方法,研究了秸秆不还田不施肥(CK)、秸秆还田+尿素1(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=0∶6∶2∶2,T1)、秸秆还田+尿素2(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3∶3∶2∶2,T2)、秸秆还田+沼液+尿素(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3(沼液)∶3(2沼液+1尿素)∶2(尿素)∶2(尿素),T3) 4种氮肥运筹方式对水稻各生育期(分蘖期、孕穗期、成熟期)土壤微生物群落结构的影响。结果表明: 1)T3处理显著提高了各生育期土壤中的有效氮含量,其中成熟期有效氮含量显著高于分蘖期和孕穗期;T1~T3处理的有效磷和速效钾含量在各生育期均高于CK,且分蘖期的含量高于孕穗期和成熟期;稻田各生育期与各处理的交互作用对土壤有效氮、有效磷、速效钾含量均有显著影响;2)T3能提高稻田土壤中微生物碳源代谢强度,碳水化合物、氨基酸、聚合物、羧酸是稻田土壤微生物利用的主要碳源,稻田各生育期与各处理的交互作用对微生物利用碳水化合物和羧酸的能力有显著影响;3)T2、T3能显著提高土壤微生物生物量;T2处理真菌/细菌比较高,以真菌为主导,更有利于稻田土壤生态系统的稳定。表明秸秆还田同步施用氮肥(尿素或沼液)能提高土壤微生物活性,改善土壤环境。  相似文献   

19.
It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in the community composition in the course of the process.  相似文献   

20.
Fifteen wheat varieties commercially grown in Kenya were tested for their susceptibility to head blight and mycotoxin accumulation after inoculation with Fusarium graminearum in pot experiments. The strains of the pathogen used had been isolated from wheat collected in different growing areas of Kenya. Head blight susceptibility was assessed as the percentage of spikelets bleached and area under disease progress curve; kernel colonization by fungal mycelium was determined as ergosterol content. All varieties were found to be moderately to highly susceptible. However, the varieties differed in head blight susceptibility (29–68% of spikelets bleached; mean 54%), fungal colonization (67–187  μ g/g ergosterol content; mean 111  μ g/g) and the resulting mycotoxin contamination [deoxynivalenol (DON) 5–31  μ g/g; mean 13.5  μ g/g]. Grain weight reductions due to head blight ranged from 23 to 57% (mean 44%). The varieties could be therefore divided into partially resistant and highly susceptible genotypes. The kernels of highly susceptible varieties had higher mycotoxin and ergosterol contents. However, the kernels of some varieties contained more fungal mycelium (ergosterol) without the corresponding high amounts of DON, suggesting that they possess some resistance to DON accumulation. Less susceptible varieties showed resistance to fungal spread, as indicated by a slow disease development and lower content of fungal biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号