首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many studies have demonstrated the protective effects of Bcl-x(L) against both apoptotic and necrotic cell death, but the mode of action of Bcl-x(L) remains unclear. This work analyzed effects of Bcl-x(L) overexpression on cellular levels of reactive oxygen species (ROS), intracellular calcium ([Ca(2+)](i)), and mitochondrial membrane potential (DeltaPsi(m)) in cultured mouse primary astrocytes after exposure to glucose deprivation (GD) or hydrogen peroxide (H(2)O(2)). Upon exposure to GD or H(2)O(2), uninfected and Lac-Z-expressing astrocytes showed an immediate, rapid increase in ROS accumulation that was slowed and or reduced by Bcl-x(L). Changes in DeltaPsi(m) in response to the two insults differed. H(2)O(2) induced a decrease in DeltaPsi(m) that was initially greater in Bcl-x(L) cells, but then held stable. DeltaPsi(m) in control and Lac-Z-expressing cells initially declined more slowly, but after about 20 min showed rapid deterioration. Five hours of GD caused mitochondrial membrane hyperpolarization followed by a decrease in DeltaPsi(m,) which was not observed with Bcl-x(L) overexpression. Bcl-x(L) failed to inhibit the calcium dysregulation seen in control cells exposed to 400 microM H(2)O(2), but still improved cell survival. There was no increase in [Ca(2+)](i) with 5 h of GD. These data thus dissociate the effect of Bcl-x(L) on calcium homeostasis from effects on ROS, DeltaPsi(m,) and for H(2)O(2) exposure, cell survival.  相似文献   

2.
Glucose metabolism plays a pivotal role in many physiological and pathological conditions. To investigate the effect of hypoglycemia (obtained by glucose deprivation) on PC12 cell line, we analyzed the cell viability, mitochondrial function (assessed by MTT reduction, cellular ATP level, mitochondrial transmembrane potential), and the level of reactive oxygen species (ROS) after glucose deprivation (GD). Upon exposure to GD, ROS level increased and MTT reduction decreased immediately, intracellular ATP level increased in the first 3 hours, followed by progressive decrease till the end of GD treatment, and the mitochondrial transmembrane potential (ΔΨm) dropped after 6 hours. Both necrosis and apoptosis occurred apparently after 24 hours which was determined by nuclei staining with propidium iodide(PI) and Hoechst 33342. These data suggested that cytotoxity of GD is mainly due to ROS accumulation and ATP depletion in PC12 cells.  相似文献   

3.
4.
Eriocheir sinensis is a euryhaline crab migrating from sea to freshwater habitats during the juvenile stage. We used quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the gene expression profile of Na(+)-K(+)-ATPase, Hsp70 (heat shock protein 70) and Hsp90 in megalopa exposed to salinities of 0, 2, 5, 10, and 15 parts per thousand. Both low and high salinities markedly stimulated expression of Na(+)-K(+)-ATPase, Hsp70 and Hsp90 genes of Chinese mitten crab megalopa; salinity had different effects on Na(+)-K(+)-ATPase, Hsp70 and Hsp90 levels depending on the duration of salinity stress, implying that Na(+)-K(+)-ATPase, Hsp70 and Hsp90 may play an important role in salinity tolerance in this crab species.  相似文献   

5.
Electroencephalographic methods were used to study effects of the preparation of the exogenous heat shock protein with molecular mass 70 kDa (Hsp70i/Hsc70) on the time characteristics of sleep and waking, brain temperature, peripheral vasomotor reactions and thoracic muscle contractile activity after the 5-hour sleep deprivation in pigeons (Columba livia). The microinjections of Hsp70i/Hsc70 were performed into the third brain ventricle after the end of sleep deprivation. It was shown that Hsp70i/Hsc70 eliminated the disturbances of sleep-wake cycle and evoked a decrease in the thoracic muscle contractile and brain temperature during the first hour of postdeprivation period. During the following hours Hsp70i/Hsc70 evoked an increase in the total time of deep sleep and a decrease in the total time of rapid-eye-movement sleep. We suppose that the protective effects of Hsp70i/Hsc70 could be associated with its capacity to weaken the activity of the hypothalamo-hypophyseal-adrenal axis and to enhance the stress-limiting function of non-rapid-eye-movement sleep.  相似文献   

6.
Electroencephalographic methods were used to study effects of preparation of the exogenous heat shock protein with molecular mass of 70 kDa (Hsp70i/Hsc70) on time characteristics of sleep and wakefulness, brain temperature, peripheral vasomotor reactions, and thoracic muscle contractile activity after the 5-hour forceful sleep deprivation in the pigeon Columba livia. Administration of Hsp70i/Hsc70 into the third brain ventricle at once after the end of sleep deprivation eliminated disturbances in the sleep-wakefulness cycle organization and decreased the thoracic muscle contractile activity and the brain temperature as early as for the first hour of postdeprivation period. For the subsequent hours, the Hsp70i/Hsc70 action was characterized by an increase of the total time of deep sleep and a decrease of the total time of the rapid eye movement sleep. We suggest that the protective effects of the exogenous Hsp70i/Hsc70 preparation are associated with its ability to decrease activity of the hypothalamo-pituitary-adrenal axis and to enhance the stress-limiting function of the slow eye movement sleep.  相似文献   

7.
Subjecting myogenic H9c2 cells to transient energy deprivation leads to a caspase-independent death with typical features of necrosis. Here we show that the rupture of cytoplasmic membrane, the terminal event in necrosis, is shortly preceded by rapid depolarization of mitochondrial membranes. The rapid deenergization of mitochondria critically depended upon prior generation of reactive oxygen species (ROS) during ATP depletion stage. Accordingly, expression of catalase prevented mitochondrial depolarization and averted subsequent necrosis. Interestingly, trifluoperazine, a compound that protects cells from ischemic insults, prevented necrosis of H9c2 cells through inhibition of ROS production. Other factors that regulated the mitochondrial membrane depolarization and subsequent loss of plasma membrane integrity include a stress kinase JNK activated at early steps of recovery from ATP depletion, as well as an apoptotic inhibitory protein ARC. Accordingly, inhibition of JNK or overexpression of ARC prevented mitochondrial depolarization and rescued H9c2 cells from necrosis. ROS and JNK affected mitochondrial deenergization and necrosis independently of each other since inhibition of ROS production did not prevent activation of JNK, whereas inhibition of JNK did not suppress ROS accumulation. Therefore, JNK activation and ROS production represent two independent pathways that control mitochondrial depolarization and subsequent necrosis of cells subjected to transient energy deprivation. Overexpression of ARC, although preventing mitochondrial depolarization, did not affect either JNK activation or production of ROS. The major heat shock protein Hsp72 inhibited JNK-related steps of necrotic pathway but did not affect ROS accumulation. Interestingly, mitochondrial depolarization and subsequent necrosis can be suppressed by an Hsp72 mutant Hsp72DeltaEEVD, which lacks chaperone function but can efficiently suppress JNK activation. Thus, Hsp72 is directly implicated in a signaling pathway, which leads to necrotic death.  相似文献   

8.
In the yeast Saccharomyces cerevisiae, a mild heat treatment strongly induces Hsp104p which provides acquisition of thermotolerance. The mechanism by which Hsp104p protects cells from the severe heat shock has not yet been completely elucidated. In this study, a pivotal role of Hsp104p as an efficient scavenger of the reactive oxygen species (ROS) is investigated. In our previous study, we reported that Hsp104p acted as a regulator in the mitochondrial respiration pathway. In this report, the recombinant wild-type and hypersensitive ras mutants (ira2Delta) with the extrachromosomal plasmids wild-type and mutant hsp104 genes were studied. The resulting strains successfully expressed both wild-type and mutant Hsp104p and showed the thermotolerance phenotype in the strain with the functional wild-type Hsp104p expressed. Upon treatment with H2O2 and menadione, the strains with the functional Hsp104p expressed showed higher survival rates than the other mutants, indicating the protective role of Hsp104p from the oxidative stress. Fluorescence measurement of the oxidation-dependent probe, 2',7'-dichlorofluoroscein diacetate (H2DCFDA), also indicated that Hsp104p significantly reduced the amount of ROS. Resistance to the oxidative stress was independent of the amount of the glutathione in the hyperactivated ras mutants. Taken all together, this study confirms that Hsp104p plays a crucial role in keeping cells from being damaged by the oxidative stress, thus acting as a modulator of the intracellular redox state.  相似文献   

9.
We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015-15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg(9) to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.  相似文献   

10.
While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-?SBD and Hsp70-?NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD.  相似文献   

11.
DJ-1 is a novel oncogene and causative gene for familial form of the Parkinson's disease (PD). DJ-1 has been shown to play a role in anti-oxidative stress by eliminating reactive oxygen species (ROS). The onset of PD is thought to be caused by oxidative stress and mitochondrial injury, which leads to protein aggregation that results in neuronal cell death. However, the mechanism by which DJ-1 triggers the onset of PD is still not clear. In this study, we analyzed association and localization of DJ-1 and its mutants with various chaperones. The results showed that DJ-1 and its mutants were associated with Hsp70, CHIP and mtHsp70/Grp75, a mitochondria-resident Hsp70, and that L166P and M26I mutants found in PD patients were strongly associated with Hsp70 and CHIP compared to wild-type and other DJ-1 mutants. DJ-1 and its mutants were colocalized with Hsp70 and CHIP in cells. Furthermore, association and colocalization of wildtype DJ-1 with mtHsp70 in mitochondria were found to be enhanced by treatment of cells with H2O2. These results suggest that translocation of DJ-1 to mitochondria after oxidative stress is carried out in association with chaperones.  相似文献   

12.
Using a fluorescent probe for superoxide, hydroethidine, we have demonstrated that glucose deprivation (GD) activates production of reactive oxygen species (ROS) in cultured cerebellar granule neurons. ROS production was insensitive to the blockade of ionotropic glutamate channels by MK-801 (10 microM) and NBQX (10 microM). Inhibitors of mitochondrial electron transport, i.e. rotenone (complex I), antimycin A (complex III), or sodium azide (complex IV), an inhibitor of mitochondrial ATP synthase--oligomycin, an uncoupler of oxidative phosphorylation--CCCP, a chelator of intracellular Ca2+--BAPTA, an inhibitor of electrogenic mitochondrial Ca2+ transport--ruthenium red, as well as pyruvate significantly decreased neuronal ROS production induced by GD. GD was accompanied by a progressive decrease in the mitochondrial membrane potential and an increase in free cytosolic calcium ions, [Ca2+](i). Pyruvate, BAPTA, and ruthenium red lowered the GD-induced calcium overload, while pyruvate and ruthenium red also prevented mitochondrial membrane potential changes induced by GD. We conclude that GD-induced ROS production in neurons is related to potential-dependent mitochondrial Ca2+ overload. GD-induced mitochondrial Ca2+ overload in neurons in combination with depletion of energy substrates may result in the decrease of the membrane potential in these organelles.  相似文献   

13.
The study was aimed to investigate the effect of leachates of solid waste from a flashlight battery factory and a pigment plant on 70 kDa heat shock protein (Hsp70) expression, generation of reactive oxygen species (ROS), antioxidant enzymes activities and apoptosis in Drosophila. Third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) were fed on diet mixed with leachates of solid wastes (0.05-2.0%, v/v) released from two industrial plants at three different pHs (7.00, 4.93 and 2.88) for 2-48 h. A concentration- and time-dependent significant change in Hsp70 expression, ROS generation, antioxidant enzymes activities and MDA content was observed in the exposed larvae preceding the antioxidant enzymes activities. Mitochondria-mediated, caspase-dependent apoptotic cell death in the larvae exposed to 1.0 and 2.0% leachates of flashlight battery factory was concurrent with a significant regression in Hsp70 expression and a higher ROS generation. A positive correlation drawn between ROS generation and apoptotic markers and a negative correlation between apoptotic markers and Hsp70 expression in these groups indicated the important role of ROS in the leachate-induced cellular damage. Hsp70 along with antioxidant enzymes offered protection to the organisms exposed to all the tested concentrations of the leachates of pigment plant waste and 0.5% leachate of flashlight battery factory in a cooperative manner when ROS generation was less induced. Conversely, higher levels of ROS generation in the organisms treated with 1.0 and 2.0% leachate of flashlight battery factory after 24 and 48 h resulted in regression of Hsp70 expression in them leading to cell death. The study suggests that (1) leachates of flashlight battery factory waste more adversely affected the organisms in comparison to the leachates of pigment plant waste. (2) Hsp70 may be used as a biomarker of cellular damage in organisms exposed to leachates. (3) Cell based assays using D. melanogaster as an in vivo model may provide important mechanistic information about the adverse effect of xenobiotics.  相似文献   

14.
The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.The mitochondrion plays important roles in cell physiology. The mitochondrion functions as the “cellular power house” by generating most of the supply of ATP for the cell. In addition, the mitochondrion is involved in a number of critical cellular processes including the synthesis of metabolites, lipid metabolism, free radical production, and metal ion homeostasis. The mitochondrion consists of four compartments, the outer membrane, the inner membrane, the intermembrane space, and the mitochondrial matrix. The mitochondrion contains a large number of proteins (1), but only a few of these are translated within the mitochondrion (2). Therefore, the majority of the mitochondrial proteins are synthesized in the cytosol and translocated into the mitochondrion.The mitochondrial preproteins contain specific targeting signals to reach the correct compartments within the mitochondria. The mitochondrial matrix preproteins contain N-terminal targeting sequences that form the short amphipathic helices (26). On the other hand, some mitochondrial proteins of the inner and outer membrane contain internal targeting signals within the mature proteins (7). The mitochondrion has developed a set of delicate translocons to transport the preproteins into the mitochondrial compartments, one translocase of the outer membrane (TOM)2 and two translocases of the inner membrane (TIM23 and TIM22) (4, 5, 8). The TOM complex has two surface receptors, Tom20 and Tom70 (9, 10). Tom20 recognizes the N-terminal mitochondrial targeting signals from the preproteins, whereas Tom70 binds to internal targeting sequences of preproteins such as the multi-transmembrane carrier proteins residing in the mitochondrial membranes (912). The crystal structure of Saccharomyces cerevisiae Tom70 revealed that Tom70 contained 11 TPR motifs, and the TPR motifs were clustered into two domains. The three TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70/Hsp90, whereas the C-terminal domain of Tom70p contains a large preprotein-binding pocket (13).Molecular chaperones Hsp70 and Hsp90 play important roles in targeting the preproteins to TOM complex (14). Hsp70 and Hsp90 can protect these preproteins from aggregation in the cytosol (15). The C-terminal EEVD motifs of Hsp70/Hsp90 may interact directly with the N-terminal domain of Tom70p to target the preproteins to TOM complex (13, 14, 16). The C-terminal EEVD motif of Hsp70/Hsp90 has been indicated to bind several proteins containing TPR motifs including Hop and CHIP. The complex structures for the Hsp70/Hsp90 EEVD motif and Hop and CHIP TPR regions have been determined (1721).Tom71 (also known as Tom72) was identified as a homologue with Tom70 with high amino acid sequence identity (>50%) (22). Tom71 shares overlapping functions with Tom70 to transfer the preproteins and maintain the mitochondrial morphology (23, 24). In this study, we have determined the crystal structures of S. cerevisiae Tom71 and the complexes of Tom71 and Hsp70/Hsp90 C-terminal EEVD motifs. These structures suggest that the Hsp70/Hsp90 binding to Tom70/Tom71 may keep Tom70/Tom71 in the open state for receiving preproteins. The Hsp70/Hsp90 interactions may also increase the volume of the preprotein-binding pocket of Tom70/Tom71 and prepare Tom70/Tom71 for preprotein loading.  相似文献   

15.
The E3 ubiquitin ligase CHIP is involved in protein triage, serving as a co-chaperone for refolding as well as catalyzing ubiquitination of substrates. CHIP functions with both the stress induced Hsp70 and constitutive Hsc70 chaperones, and also plays a role in maintaining their balance in the cell. When the chaperones carry no client proteins, CHIP catalyzes their polyubiquitination and subsequent proteasomal degradation. Although Hsp70 and Hsc70 are highly homologous in sequence and similar in structure, CHIP mediated ubiquitination promotes degradation of Hsp70 with a higher efficiency than for Hsc70. Here we report a detailed and systematic investigation to characterize if there are significant differences in the CHIP in vitro ubiquitination of human Hsp70 and Hsc70. Proteomic analysis by mass spectrometry revealed that only 12 of 39 detectable lysine residues were ubiquitinated by UbcH5a in Hsp70 and only 16 of 45 in Hsc70. The only conserved lysine identified as ubiquitinated in one but not the other heat shock protein was K159 in Hsc70. Ubiquitination assays with K-R ubiquitin mutants showed that multiple Ub chain types are formed and that the distribution is different for Hsp70 versus Hsc70. CHIP ubiquitination with the E2 enzyme Ube2W is predominantly directed to the N-terminal amine of the substrate; however, some internal lysine modifications were also detected. Together, our results provide a detailed view of the differences in CHIP ubiquitination of these two very similar proteins, and show a clear example where substantial differences in ubiquitination can be generated by a single E3 ligase in response to not only different E2 enzymes but subtle differences in the substrate.  相似文献   

16.
17.
We show that human wild-type alpha synuclein (WT alpha-syn), and the inherited mutants A53T or A30P, when expressed in the yeast Saccharomyces cerevisiae triggers events that are diagnostic of apoptosis: loss of membrane asymmetry due to the externalization of phosphatidylserine, accumulation of reactive oxygen species (ROS), and the release of cytochrome c from mitochondria. A brief heat shock was strikingly protective in that alpha-syn-expressing cells receiving a heat shock exhibited none of these apoptotic markers. Because the heat shock did not decrease the expression level of alpha-syn, a protective protein or proteins, induced by the heat shock, must be responsible for inhibition of alpha-syn-induced apoptosis. Using ROS accumulation as a marker of apoptosis, the role of various genes and various drugs in controlling alpha-syn-induced apoptosis was investigated. Treatment with geldanamycin or glutathione, overexpression of Ssa3 (Hsp70), or deletion of the yeast metacaspase gene YCA1 abolishes the ability of alpha-syn to induce ROS accumulation. Deletion of YCA1 also promotes vigorous growth of alpha-syn-expressing cells compared to cells that contain a functional copy of YCA1. These findings indicate that alpha-syn-induced ROS generation is mediated by the caspase, according to alpha-syn-->caspase-->ROS-->apoptosis. It is shown by co-immunoprecipitation that Ssa3 binds to alpha-syn in a nucleotide-dependent manner. Thus, we propose that Hsp70 chaperones inhibit this sequence of events by binding and sequestering alpha-syn.  相似文献   

18.
Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species to protect neuronal cells against oxidative stress in neurodegenerative diseases. The present study was designed to examine whether CoQ10 was capable of protecting astrocytes from reactive oxygen species (ROS) mediated damage. For this purpose, ultraviolet B (UVB) irradiation was used as a tool to induce ROS stress to cultured astrocytes. The cells were treated with 10 and 25 μg/ml of CoQ10 for 3 or 24 h prior to the cells being exposed to UVB irradiation and maintained for 24 h post UVB exposure. Cell viability was assessed by MTT conversion assay. Mitochondrial respiration was assessed by respirometer. While superoxide production and mitochondrial membrane potential were measured using fluorescent probes, levels of cytochrome C (cyto-c), cleaved caspase-9, and caspase-8 were detected using Western blotting and/or immunocytochemistry. The results showed that UVB irradiation decreased cell viability and this damaging effect was associated with superoxide accumulation, mitochondrial membrane potential hyperpolarization, mitochondrial respiration suppression, cyto-c release, and the activation of both caspase-9 and -8. Treatment with CoQ10 at two different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide, normalization of mitochondrial membrane potential, improvement of mitochondrial respiration, inhibition of cyto-c release, suppression of caspase-9. Furthermore, CoQ10 enhanced mitochondrial biogenesis. It is concluded that CoQ10 may protect astrocytes through suppression of oxidative stress, prevention of mitochondrial dysfunction, blockade of mitochondria-mediated cell death pathway, and enhancement of mitochondrial biogenesis.  相似文献   

19.
Hsp70 family proteins function as motors driving protein translocation into mitochondria and the endoplasmic reticulum. Whether Hsp70 is involved in protein import into chloroplasts has not been resolved. We show here Arabidopsis thaliana knockout mutants of either of the two stromal cpHsc70s, cpHsc70-1 and cpHsc70-2, are defective in protein import into chloroplasts during early developmental stages. Protein import was found to be affected at the step of precursor translocation across the envelope membranes. From solubilized envelope membranes, stromal cpHsc70 was specifically coimmunoprecipitated with importing precursors and stoichiometric amounts of Tic110 and Hsp93. Moreover, in contrast with receptors at the outer envelope membrane, cpHsp70 is important for the import of both photosynthetic and nonphotosynthetic proteins. These data indicate that cpHsc70 is part of the chloroplast translocon for general import and is important for driving translocation into the stroma. We further analyzed the relationship of cpHsc70 with the other suggested motor system, Hsp93/Tic40. Chloroplasts from the cphsc70-1 hsp93-V double mutant had a more severe import defect than did the single mutants, suggesting that the two proteins function in parallel. The cphsc70-1 tic40 double knockout was lethal, further indicating that cpHsc70-1 and Tic40 have an overlapping essential function. In conclusion, our data indicate that chloroplasts have two chaperone systems facilitating protein translocation into the stroma: the cpHsc70 system and the Hsp93/Tic40 system.  相似文献   

20.
Hsp70.1 and related lysosomal factors for necrotic neuronal death   总被引:1,自引:0,他引:1  
Necrosis has long been considered accidental and uncontrolled, but during the last decade, it became clear that necrosis is also a well-orchestrated form of cell demise, being as well programmed as apoptosis. To explain the mechanism of neuronal necrosis after ischemia/reperfusion, the 'calpain-cathepsin hypothesis' formulated in 1998 postulates that the post-ischemic μ-calpain activation compromises integrity of the lysosomal membrane, thereby leading to cathepsin spillage. Another cause of the lysosomal rupture occurring during reperfusion is reactive oxygen species (ROS) that generate 4-hydroxy-2-nonenal (HNE) by oxidation of membrane fatty acids such as linoleic and arachidonic acids. HNE is an endogenous neurotoxin, because HNE-induced carbonylation of the substrate protein shows loss of its function. However, the molecular mechanisms of lysosomal membrane breakdown are still poorly understood; especially, the biochemical cascade how μ-calpain and ROS work together to disrupt lysosomal membrane has remained unclarified. Three independent proteomic analyses of cerebral ischemia, glaucoma, or mild cognitive impairment in primates have altogether suggested that the common substrate of calpain and/or ROS is heat-shock protein 70.1 (Hsp70.1; simply Hsp70, also called Hsp72 or HSPA1), a major protein of the human Hsp70 family. Hsp70.1 serves cytoprotective roles as a guardian of the lysosomal membrane integrity by assisting sphingomyelin degradation or maintaining proper protein folding and recycling as a chaperone. However, calpain-mediated cleavage of Hsp70.1, especially after its carbonylation because of the oxidative stresses, can induce lysosomal rupture. Furthermore, Hsp70.1 dysfunction activates nuclear factor-kappaB (NF-κB) signaling that can also promote neurodegeneration. By focusing on Hsp70.1 and related lysosomal factors, this review describes rationale of lysosomal destabilization and rupture for executing programmed neuronal necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号