首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report relaxation time measurements by semi-selective and totally selective NMR techniques on the thymidine imino protons of d(GGATATCC) and d(GGm6ATATCC). For these oligonucleotides helix fraying, rather than single base pair opening, is the major exchange mechanism even 25 degrees C below the Tm. We have therefore applied a new saturation transfer technique to measure exchange rates at temperatures where fraying has a very small or negligible contribution. Measurements of exchange rates as a function of temperature give significantly different activation energies for base pairs 3 and 4 in d(GGATATCC). Adenine methylation results in a slowing down of the opening rate for the m6A-T base pair but surprisingly has an even greater effect upon the adjacent non-methylated A-T base pair.  相似文献   

2.
The conformation of two hexanucleotides, d(GGATCC) and d(GGm6ATCC), has been studied by proton nuclear magnetic resonance. Nuclear Overhauser effect (NOE) measurements on d(GGATCC) are in agreement with a normal B form right-handed helical structure. The single- and double-strand resonances are in fast exchange on a proton NMR time scale. The exchange is observed to be slow for d(GGm6ATCC); up to the Tm, separate resonances are observed for each state, though above the Tm exchange becomes more rapid. The preferred orientation of the adenosine methylamino group (methyl cis to N1) hinders base-pair formation. At 0 degree C irradiation of the m6A-T imino proton gives an NOE to AH2, showing that base pairing is Watson-Crick. Intra- and interresidue NOEs show that the helix is right handed and in the B form. Comparing results on the two oligomers demonstrates that adenosine methylation induces little or no change in the conformation of the helix but reduces the Tm from 45 to 32 degrees C. All of the amino proton resonances, as well as the imino resonances, have been assigned. From NOE experiments on the unmethylated oligomer we have located the Watson-Crick and non-Watson-Crick adenosine amino protons. At 0 degree C these resonances show broadening due to rotation of the amino group, and their rotation is slightly slower than for the adjacent guanosine amino group, though both these amino groups have lifetimes of less than 10 ms at 0 degree C. The imino protons show normal behavior, disappearing from the spectra ca. 20 degrees C below the Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the conformation of two hexanucleotides d(GGATCC) and d(GGm6ATCC) using proton nuclear magnetic resonance. Nuclear Overhauser effect measurements show that d(GGATCC) assumes a normal right handed B helix. The single and double strand resonances are in fast exchange on a proton nuclear magnetic resonance time scale. For d(GGm6ATCC), up to the Tm separate resonances are observed for each state, indicating slow exchange, though above the Tm it becomes more rapid. The orientation of the adenosine methyl-amino group, preferentiallycis to N1, hinders base pair formation.The connectivities of the resonances of the two states were established by saturation transfer experiments. At 0°C irradiation of the m6 A-T imino proton gives an nuclear Overhauser effect to AH2 showing that base pairing is Watson-Crick. Intra and interresidue nuclear Overhauser effects starting from the 3′ terminus show that the helix is right handed and in the B-form.The results on the two oligomers demonstrate that adenosine methylation induces little or no change in the conformation of the helix, but reduces the Tm from 45° to 32°C and slows the opening and closing of the m6A.T base pair by a factor of about 100.  相似文献   

4.
One- and two-dimensional nuclear magnetic resonance (NMR) experiments have been undertaken to investigate the conformation of the d(C1-G2-C3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) self-complementary dodecanucleotide (henceforth called O6meG.C 12-mer), which contains C3.O6meG10 interactions in the interior of the helix. We observe intact base pairs at G2.C11 and G4.C9 on either side of the modification site at low temperature though these base pairs are kinetically destabilized in the O6meG.C 12-mer duplex compared to the G.C 12-mer duplex. One-dimensional nuclear Overhauser effects (NOEs) on the exchangeable imino protons demonstrate that the C3 and O6meG10 bases are stacked into the helix and act as spacers between the flanking G2.C11 and G4.C9 base pairs. The nonexchangeable base and H1', H2', H2', H3', and H4' protons have been completely assigned in the O6meG.C 12-mer duplex at 25 degrees C by two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) experiments. The observed NOEs and their directionality demonstrate that the O6meG.C 12-mer is a right-handed helix in which the O6meG10 and C3 bases maintain their anti conformation about the glycosidic bond at the modification site. The NOEs between the H8 of O6meG10 and the sugar protons of O6meG10 and adjacent C9 exhibit an altered pattern indicative of a small conformational change from a regular duplex in the C9-O6meG10 step of the O6meG.C 12-mer duplex. We propose a pairing scheme for the C3.O6meG10 interaction at the modification site. Three phosphorus resonances are shifted to low field of the normal spectral dispersion in the O6meG.C 12-mer phosphorus spectrum at low temperature, indicative of an altered phosphodiester backbone at the modification site. These NMR results are compared with the corresponding parameters in the G.C 12-mer, which contains Watson-Crick base pairs at the same position in the helix.  相似文献   

5.
The non-exchangeable base and sugar protons of the dodecanucleotide d(CAATCCGGATTG) have been assigned by the combined use of one and two-dimensional NMR spectroscopy. The sequential assignments of the base and sugar protons have been obtained using two dimensional nuclear Overhauser effect and homonuclear shift correlated spectra. By analysis of the nuclear Overhauser effect data it was determined that the dodecanucleotide assumes a right handed B-type helix in the aqueous medium used in this study.  相似文献   

6.
One- and two-dimensional NMR studies at 300 MHz and 500 MHz were carried out on the two oligonucleotides d(C-C-G-A-A-T-T-C-G-G) and d(C-C-G-A-m6A-T-T-C-G-G) in aqueous solution. NMR spectra were observed at 10 mM sample concentration over the temperature range 273-368 K. Assignments are given of the base, H1', H2', H2", H3' and of some H4' resonances, based upon a combination of two-dimensional correlation spectra (COSY) and two-dimensional nuclear Overhauser effect spectra (NOESY); imino-proton resonances were assigned with the aid of a two-dimensional NOE experiment. Chemical shift vs temperature profiles were constructed in order to gain insight into the influence of N6-methylation of residue A(5) on the temperature-dependent conformational behaviour of the decamer and to determine thermodynamic parameters for the duplex-to-coil transition. The NOESY spectra, the imino-proton spectra and the shift profiles of the two compounds, under conditions where each forms a B-DNA-type duplex, are very similar. This is taken to indicate that the influence of N6-methylation of residue A(5) on the local structure of the duplex must be small. However, the temperature dependence of the (non-)exchangeable proton resonances of the two compounds reveals that methylation slows down the duplex-single-strand exchange. Furthermore, a thermodynamic analysis of the two compounds indicates that N6-methylation slightly decreases the stability of the duplex relative to the monomeric forms (Tm is reduced from 332 K down to 325 K at 10 mM sample concentration). Proton-proton couplings were obtained by means of one-dimensional and two-dimensional NMR experiments and were used in a conformational analysis of the sugar ring of each residue of the two compounds in the duplex form. The analysis indicated that all sugar rings display conformational flexibility in the intact duplex: population S-type sugar conformation ranges from 70% to 100%. A more refined analysis of the sugar rings of the parent compound revealed a sequence-dependent variation of the sugar geometry. This variation does not follow well the trend predicted by the Calladine/Dickerson sigma 3-sum rule [Dickerson, R. E. (1983) J. Mol. Biol. 166, 419-441; Calladine, C. R. (1982) J. Mol. Biol. 161, 343-352]; moreover the actual variations appear to be smaller in solution than those expected on the basis of known X-ray structures.  相似文献   

7.
The non-exchangeable proton resonances of the hexadeoxynucleoside pentakisphosphates d(m5C-G)3 and d(br5C-G)3 in the B form as well as in the Z form were assigned by means of two-dimensional correlated spectroscopy and two-dimensional nuclear Overhauser enhancement spectroscopy. The complete proton NMR spectrum of the B form of the methylated compound was assigned in a pure 2H2O solution as well as in a 2H2O/C2H3O2H mixed solvent, containing 5 mM MgCl2. In the latter solvent the B form occurs in slow equilibrium (on the NMR time scale) with the Z form, the resonances of which also were fully assigned. The proton resonances of the B and Z forms of the brominated fragment were assigned in a 2H2O/C2H3O2H solution containing 5 mM MgCl2. A new and general method is described for the sequential assignment of the non-exchangeable proton resonances of oligonucleotides in the Z form.  相似文献   

8.
The conformation of the decanucleotide duplex d(GGTAATTACC)2 has been investigated in solution by one- and two-dimensional proton NMR spectroscopy. Intra- and inter-nucleotide two-dimensional nuclear Overhauser enhancement data, recorded at mixing times between 15 and 250 ms, reveal a right-handed B-DNA structure. The data also show that the A-T basepairs of the TAATTA tract are highly propeller twisted and the minor groove is particularly narrow.  相似文献   

9.
A heteroduplex containing the mismatch 2-aminopurine (AP)-adenine has been synthesized and studied by proton NMR. The mismatch was incorporated into the sequence d[CGG(AP)GGC].d-(GCCACCG). One-dimensional nuclear Overhauser effect measurements in H2O and two-dimensional nuclear Overhauser effect spectra in D2O show AP.A base pairs in a wobble structure in which both bases are in the anti conformation. The adenine is stacked well in the helix, but the helix twist between the adenine and neighboring cytosine in the 3' direction is unusually small. As a result, the aminopurine on the opposite strand is somewhat pushed out of the helix. From the measurements of the imino proton line widths, the two adjacent G.C base pairs are not found to be significantly destabilized by the presence of the purine-purine wobble pair.  相似文献   

10.
The 400-MHz 1H- and 162-MHz 31P-nmr have been used to study complexes constituted by (a) the d(TpTpCpGpCpGpApA)2 or the d(CpGpCpG)2 self-complementary oligonucleotides and (b) two bifunctional 7H-pyrido [4,3-c] carbazole dimer drugs, the antitumoral ditercalinium (NSC 366241), a dimer with a rigid bis-piperidine linking chain and its pharmacologically inactive analogue, a dimer with a flexible spermine-like linking chain. Nearly all proton and phosphorus signals have been assigned by two-dimensional (2D) nmr (correlated spectroscopy, homonuclear Hartmann-Hahn, nuclear Overhauser enhancement spectroscopy, 2D 31P (1H) heteronuclear correlated spectroscopy and 31P-31P chemical exchange experiments). Both drugs bis-intercalate into the two CpG sites. The complexes show small differences in the position of the 7H-pyrido [4,3-c] carbazole ring into the intercalation site and possibly in the ribose-phosphate backbone deformation. However, the inactive analogue exhibits a longer residence lifetime in octanucleotide than the ditercalinium does. All these results are discussed in terms of differences in dimer activities.  相似文献   

11.
A general method of assigning the non-exchangeable protons in the nuclear magnetic resonance spectra of small DNA molecules has been developed based upon two-dimensional autocorrelated (COSY) and nuclear Overhauser (NOESY) spectra in 2H2O solutions. Groups of protons in specific sugars or bases are identified by their scalar couplings (COSY), then connected spatially in a sequential fashion using the Overhauser effect (NOESY). The method appears to be generally applicable to moderate-sized DNA duplexes with structures close to B DNA. The self-complementary DNA sequence d(C-G-C-G-A-A-T-T-C-G-C-G) has been synthesized by the solid-phase phosphite triester technique and studied by this method. Analysis of the COSY spectrum and the NOESY spectrum leads to the unambiguous assignment of all protons in the molecule except the poorly resolved H5' and H5" resonances. The observed NOEs indicate qualitatively that, in solution, the d(C-G-C-G-A-A-T-T-C-G-C-G) helix is right-handed and close to the B DNA form with a structure similar to that determined by crystallography.  相似文献   

12.
High-resolution proton and phosphorus NMR studies are reported on the self-complementary d(C1-G2-T3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplex (henceforth called O6meG.T 12-mer), which contains T3.O6meG10 interactions in the interior of the helix. The imino proton of T3 is observed at 9.0 ppm, exhibits a temperature-independent chemical shift in the premelting transition range, and broadens out at the same temperature as the imino proton of the adjacent G2.C11 toward the end of the helix at pH 6.8. We observed inter base pair nuclear Overhauser effects (NOEs) between the base protons at the T3.O6meG10 modification site and the protons of flanking G2.C11 and G4.C9 base pairs, indicative of the stacking of the T3 and O6meG10 bases into the helix. Two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) studies have permitted assignment of the base and sugar H1', H2', and H2' nonexchangeable protons in the O6meG.T 12-mer duplex. The observed NOEs demonstrate an anti conformation about all the glycosidic bonds, and their directionality supports formation of a right-handed helix in solution. The observed NOEs between the T3.O6meG10 interaction and the adjacent G2.C11 and G4.C9 base pairs at the modification site exhibit small departures from patterns for a regular helix in the O6.meG.T 12-mer duplex. The phosphorus resonances exhibit a 0.5 ppm spectral dispersion indicative of an unperturbed phosphodiester backbone for the O6meG.T 12-mer duplex. We propose a model for pairing of T3 and O6meG10 at the modification site in the O6meG.T 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Two-dimensional NMR has been used to study the interaction of distamycin A with d(CGCAAATTGGC):d(GCCAATTTGCG) at low and intermediate drug:DNA ratios (less than 2.0). Drug-DNA contacts were identified by nuclear Overhauser effect spectroscopy, which also served to monitor exchange of the drug between different binding sites. At low drug:DNA ratios (0.5), distamycin A binds in two orientations within the five central A-T base pairs and has a preference (2.2:1) for binding with the formyl end directed toward the 5' side of the A-rich strand. The pattern of drug-DNA contacts corresponding to the preferred binding orientation are consistent with the drug sliding between adjacent AAAT and AATT binding sites at a rate that is fast on the NMR time scale. Similarly, the pattern of NOEs associated with the less favored orientation are consistent with the drug sliding between adjacent AATT and ATTT sites, again in fast exchange. Off-rates for the drug from the major and minor binding orientations were measured to be 2.4 +/- 1.5 and 3.3 +/- 1.5 s-1, respectively, at 35 degrees C. At intermediate drug:DNA ratios (1.3) exchange of the drug between the two one-drug and the two sites of a two-drug complex is observed. Off-rates for both drugs from the 2:1 complex were measured to be 1.0 +/- 0.5 s-1 (35 degrees C).  相似文献   

14.
In this study, we present the results of structural analysis of an 18-mer DNA 5'-T(1)C(2)T(3)C(4)T(5)C(6)C(7)T(8)C(9)T(10)C(11)T(12)A(13)G(14)A(15)G(16)A(17)G(18)-3' by proton nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The NMR data are consistent with characteristics for triple helical structures of DNA: downfield shifting of resonance signals, typical for the H3(+) resonances of Hoogsteen-paired cytosines; pH dependence of these H3(+) resonance; and observed nuclear Overhauser effects consistent with Hoogsteen and Watson-Crick basepairing. A three-dimensional model for the triplex is developed based on data obtained from two-dimensional NMR studies and molecular modeling. We find that this DNA forms an intramolecular "paperclip" pyrimidine-purine-pyrimidine triple helix. The central triads resemble typical Hoogsteen and Watson-Crick basepairing. The triads at each end region can be viewed as hairpin turns stabilized by a third base. One of these turns is comprised of a hairpin turn in the Watson-Crick basepairing portion of the 18-mer with the third base coming from the Hoogsteen pairing strand. The other turn is comprised of two bases from the continuous pyrimidine portion of the 18-mer, stabilized by a hydrogen-bond from a purine. This "triad" has well defined structure as indicated by the number of nuclear Overhauser effects and is shown to play a critical role in stabilizing triplex formation of the internal triads.  相似文献   

15.
D E Wemmer  S H Chou  D R Hare  B R Reid 《Biochemistry》1984,23(10):2262-2268
The resonances of most of the nonexchangeable protons of both + and - strands of the consensus Pribnow dodecamer d( CGTTATAATGCG ) have been assigned by two-dimensional nuclear magnetic resonance methods. Application of the two-dimensional nuclear Overhauser effect ( NOESY ) sequential connectivity method, combined with two-dimensional autocorrelated ( COSY ) spectra to reveal scalar-coupled protons, results in assignment of virtually all of the base and sugar protons, except the sugar C5 protons which are inadequately resolved. Analysis of the nuclear Overhauser data indicates that the helix assumes a fairly uniform B form conformation.  相似文献   

16.
The complex of the hexanucleotide duplex d(CGTACG) and the antitumor drug 3'-(2-methoxy-4-morpholinyl)-doxorubicin was investigated by two-dimensional 1H nuclear magnetic resonance spectroscopy. After complete assignment of the non-exchanging DNA protons and nearly all drug protons, eight nuclear Overhauser enhancement interactions between drug and DNA were measured at short mixing times. A model was built which shows that the overall structure is very similar to the related daunomycin complex, with the new morpholinyl-substituent extending further into the minor groove of the DNA double helix. The structural information is used for the discussion of the possible formation of DNA-adducts by the new anticancer drug.  相似文献   

17.
In order to obtain insight into the repair mechanism of DNA containing thymine photo-dimer, the conformation of the duplex d(GCGTTGCG) x d(CGCAACGC) with a thymine dimer incorporated has been studied by proton NMR and the results are compared with NMR data of the parent octamer. Two-dimensional nuclear Overhauser enhancement (2D NOE) spectroscopy and two-dimensional homonuclear Hartmann-Hahn spectroscopy have been applied to assign all the non-exchangeable base protons and most of the deoxyribose protons of both duplexes. From these experiments it is clear that indeed a cis-syn cyclobutane-type thymine photodimer is formed by the irradiation of this oligonucleotide with ultraviolet light. Comparison of 2D NOE spectra and the 1H chemical shifts of the damaged and the intact DNA duplexes reveals that formation of a thymine dimer induces small distortions of the B-DNA structure, the main conformational change occurring at the site of the thymine dimer.  相似文献   

18.
D J Patel  L Shapiro  D Hare 《Biopolymers》1986,25(4):693-706
The base and sugar protons of the d(G-G-T-A-T-A-C-C) duplex have been assigned from two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements in D2O solution at 25°C. The nucleic acid protons have been assigned from NOEs between protons on adjacent bases on the same and partner strands, as well as from NOEs between the base protons and their own and 5′-flanking H1′, H2′, H2″, H3′, and H4′ sugar protons. These assignments are confirmed from coupling constant and NOE connectivities within the sugar protons of a given residue. Several of these NOEs exhibit directionality and demonstrate that the d(G-G-T-A-T-A-C-C) duplex is a right-handed helix. The relative magnitude of the NOEs between the base protons and the sugar H2′ protons of its own and 5′-flanking sugar demonstrate that the TATA segment of the d(G-G-T-A-T-A-C-C) duplex adopts a B-DNA type helix geometry in solution, in contrast to the previous observation of a A-type helix for the same octanucleotide duplex in the crystalline state.  相似文献   

19.
M Delepierre  T H Dinh  B P Roques 《Biopolymers》1989,28(12):2115-2142
The structure of the complex formed in aqueous solution between ditercalinium, a bisintercalating drug, and the self-complementary hexanucleotide d(CpGpApTpCpG)2 is investigated by 400-MHz 1H-nmr and 162-MHz 31P-nmr. Whatever the drug to helix ratio, ditercalinium occurred in the bound form, whereas free and complexed hexanucleotide are in slow exchange. This allows unambiguous resonance assignment through two-dimensional chemical exchange experiments. The strong upfield shifts measured on most aromatic protons on both drug and bases as well as on DNA imino protons are consistent with bisintercalation of the dimer. Nuclear Overhauser effects observed between drug and nucleotide protons give a defined geometry for complexation, and suggest a DNA conformational change upon drug binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号