首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strain of bacteria has been isolated which rapidly and efficiently utilizes the herbicide glyphosate (N-phosphonomethylglycine) as its sole phosphorus source in a synthetic medium. The strain (PG2982) was isolated by subculturing Pseudomonas aeruginosa ATCC 9027 in a synthetic broth medium containing glyphosate as the sole phosphorus source. Strain PG2982 differs from the culture of P. aeruginosa in that it is nonflagellated, does not produce pyocyanin, and has an absolute requirement for thiamine. Strain PG2982 has been tentatively identified as a Pseudomonas sp. strain by its biochemical activities and moles percent guanine plus cytosine. Measurements of glyphosate with an amino acid analyzer show that glyphosate rapidly disappears from the medium during exponential growth of strain PG2982. In batch culture at 30°C, this isolate completely utilized 1.0 mM glyphosate in 96 h and yielded a cell density equal to that obtained with 1.0 mM phosphate as the phosphorus source. However, a longer lag phase and greater generation time were noted in the glyphosate-containing medium. Strain PG2982 can efficiently utilize glyphosate as an alternate phosphorus source.  相似文献   

2.
Summary The effect of recurrent applications of the herbicide glyphosate on a garden soil was investigated. Compared to an adjacent untreated soil the microbial population showed reduced sensitivity to glyphosate when grown in mineral salts medium. In both populations inhibition could be partially reversed by addition to the medium of the end products of the aromatic amino acid biosynthetic pathway, but the effect was more pronounced in the population from the treated site. However, all isolates from both soils were capable of growth in unsupplemented medium in the presence of as much as 10 mM glyphosate. No evidence for glyphosate metabolism was obtained from enrichment experiments carried out using inocula from the untreated soil; at the treated site organisms capable of using glyphosate as sole C or N source could not be isolated but a variety of Gram-negative bacteria able to use its phosphonate moiety were obtained. Many of these organisms were identified as Pseudomonas spp.  相似文献   

3.
Decomposition of vanillin by soil microorganisms   总被引:3,自引:0,他引:3  
In chernozem soil, vanillin was decomposed via vanillic and protocatechuic acid before the aromatic ring opened. The rate curves of oxygen consumption for the oxidation of vanillin were seen to have more than one maximum. During incubation of the soil with vanillin, the number of bacteria increased, especially those capable of utilizing vanillin as the sole carbon source. Of the 21 such strains isolated, 15 were identified asPseudomonas sp., five asCellulomonas sp. and one asAchromobacter sp. It was found that the course of the oxidation of vanillin varied at different p.H values and in different strains was found that the course of the oxidation of vanillin varied at different p.H values and in different strains of bacteria. In some cases, the phase of the oxidation of vanillin to vanillic acid was clearly differentiated from the subsequent decomposition of vanillic acid.  相似文献   

4.
Arthrobacter sp. GLP-1 can utilize a wide range of organophosphonates as its sole source of phosphorus. The in-situ formation of sarcosine and methane from glyphosate and methanephosphonic acid respectively was studied. These two processes are differentially induced during phosphorus-deprivation. Methanephosphonic acid strongly inhibits glyphosate degradation (I50 10 M), but glyphosate has very little effect on methane generation (I50 150 mM). The pattern of inhibition by other organophosphonates and organophosphonate analogues is also very different for the two systems. Degradation of glyphosate and methanephosphonic acid therefore represent distinct processes.Abbreviations f.wt. fresh weight - MP-lyase methanephosphonate lyase  相似文献   

5.
Metabolism of glyphosate in an Arthrobacter sp. GLP-1   总被引:9,自引:0,他引:9  
The metabolism of glyphosate [N-(phosphonomethyl)glycine] in a bacterium tentatively identified as an Arthrobacter sp., capable of growth on this herbicide as its sole phosphorus source, has been investigated using solid-state NMR techniques as well as radiotracer analysis. The pathway involves the conversion of glyphosate to glycine, a C1 unit and phosphate. The phosphonomethyl carbon is specifically incorporated into the amino acids serine, cysteine, methionine, and histidine, as well as into purine bases and thymine, indicating the involvement of tetrahydrofolate in single-carbon transfer reactions. Glycine derived from glyphosate is utilized in purine and protein biosynthesis. This pathway for glyphosate degradation in a gram-positive bacterium is similar to that previously reported for Pseudomonas sp. PG2982 [Jacob et al. (1985) J. Biol. Chem. 260, 5899-5905] and is distinct from that reported for soil metabolism of glyphosate where aminomethylphosphonic acid has been shown to be a major metabolite. Preliminary evidence is presented which indicates that the conversion of glyphosate to glycine and the C1 unit involves the intermediate formation of sarcosine. Thus, the primary event in glyphosate degradation by Arthrobacter sp. GLP-1 is the cleavage of its C-P bound. This report constitutes the first demonstration of the metabolism of glyphosate in a gram-positive bacterium.  相似文献   

6.
After growth ofK. aerogenes in chemically defined media consisting of mineral salts andp-hydroxybenzoate with or without glucose, phenol was found in the culture fluid at concentrations inhibiting further growth. Bacteria adapted to mineral salts medium containingp-hydroxybenzoate as sole source of carbon and energy produced small but isolable quantities of 3,4-dihydroxybenzoic acid and catechol and oxidized these substances as rapidly asp-hydroxybenzoate. Bacteria adapted to mineral salts medium containing glucose as sole carbon and energy source did not oxidizep-hydroxybenzoate, 3,4-dihydroxybenzoate or catechol. Bacteria adapted to glucose medium or top-hydroxybenzoate medium did not oxidize or utilize phenol as sole carbon and energy source. A metabolic pathway forp-hydroxybenzoate degradation is proposed and the formation of phenol is attributed to a side reaction.  相似文献   

7.
The dominant bacteriaPseudomonas sp. andArthrobacter sp. were isolated from the standing water of carbofuran-retreatedAzolla plot.Arthrobacter sp. hydrolysed carbofuran added to the mineral salts medium as a sole source of carbon and nitrogen while no degradation occurred withPseudomonas sp. Interestingly, when the medium containing carbofuran was inoculated with bothArthrobacter sp. andPseudomonas sp., a synergistic increase in its hydrolysis and subsequent release of CO2 from the side chain was noticed. This synergistic interaction was better expressed at 25° C than at 35° C. Likewise, related carbamates, carbaryl, bendiocarb and carbosulfan were more rapidly degraded in the combined presence of both bacterial isolates.  相似文献   

8.
Summary Two species of bacteria capable of growth onN-phosphonomethylglycine (glyphosate) were isolated from a bench scale sequencing batch reactor degrading a waste stream containing glyphosate. The enrichment and isolation medium contained defined salts and glyphosate as the sole carbon and energy source. Glyphosate was stoichiometrically degraded to aminomethylphosphonic acid (AMPA). The bacteria have been identified asAgrobacterium radiobacter andAchromobacter Group V D.  相似文献   

9.
Pseudomonas sp. strain NGK1, a soil bacterium isolated by naphthalene enrichment from biological waste effluent treatment, capable of utilizing 2-methylnaphthalene as sole source of carbon and energy. To deduce the pathway for biodegradation of 2-methylnaphthalene, metabolites were isolated from the spent medium and identified by thin-layer chromatography and high-performance liquid chromatography. The characterization of purified metabolites, oxygen uptake studies, and enzyme activities revealed that the strain degrades 2-methylnaphthalene through more than one pathway. The growth of the bacterium, utilization of 2-methylnaphthalene, and 4-methylsalicylate accumulation by Pseudomonas sp. strain NGK1 were studied at various incubation periods. Received: 20 March 2001 / Accepted: 25 April 2001  相似文献   

10.
Biotin-vitamer formation from salicylic acid was investigated. Strains of Pseudomonas sp., No. 102 and No. 362, isolated from soil samples utilized well salicylic acid as a sole source of carbon, and formed biotin-vitamers in culture broth. The metabolites were partially purified by the methods of active carbon adsorption and anion-exchange column chromatography, and clarified as desthiobiotin, bisnordesthiobiotin and 7-keto-8-aminopelargonic acid.  相似文献   

11.
Arthrobacter sp. strain GLP-1, grown on glucose as a carbon source, utilizes the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus as well as its sole source of nitrogen. The mutant strain GLP-1/Nit-1 utilizes glyphosate as its sole source of nitrogen as well. In strain GLP-1, Pi was a potent competitive inhibitor of glyphosate uptake (Ki, 24 μM), while the affinity of Pi for the uptake system of strain GLP-1/Nit-1 was reduced by 2 orders of magnitude (Ki, 2.3 mM). It is concluded that the inability of strain GLP-1 to utilize glyphosate as a source of nitrogen is due to the stringent control of glyphosate uptake by excess phosphate released during the degradation of the herbicide.  相似文献   

12.
Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacterial strain without previous selection for glyphosate utilization as a source of phosphorus.  相似文献   

13.
A bacterial strain capable of utilizing pentachlorophenol (PCP) as sole source of carbon and energy for growth was isolated from enrichment cultures containing 100 mg/l PCP in a mineral salts medium inoculated with contaminated soil from a lumber treatment waste site. The isolate, designated strain SR3, was identified as a species ofPseudomonas by virtue of its physiological and biochemical characteristics. Mineralization of PCP byPseudomonas sp. strain SR3 was demonstrated by loss of detectable PCP from growth medium, stoichiometry of chloride release (5 equivalents of chloride per mole of PCP), and formation of biomass consistent with the concentration of PCP mineralized. PCP-induced cells of strain SR3 showed elevated rates of oxygen consumption in the presence of PCP, and with different chlorinated phenols, with complete degradation of 2,3,5,6-, 2,3,6-, 2,4,6-, 2,4-, and 2,6-chloro-substituted phenols. Concentrations of PCP up to 175 mg/liter supported growth of this organism, but maximal rates of PCP removal were observed at a PCP concentration of 100 mg/liter. Based on its degradative properties,Pseudomonas sp. strain SR3 appears to have utility in bioremediation of soil and water contaminated with PCP.Abbreviations DCP dichlorophenol - TCP trichlorophenol - TeCP tetrachlorophenol Contribution No. 750 from the United States Environmental Protection Agency Environmental Research Laboratory, Gulf Breeze, FL32561, USA. A preliminary report of this work has appeared in abstract form (Resnick & Chapman 1990; Abstr. Annu Meet Amer Soc Microbiol Q-70, p. 300).  相似文献   

14.
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon and energy.  相似文献   

15.
When Micrococcus sp. which was isolated from soil assimilated azelaic acid as a sole carbon source, cell-free extract of the organism catalyzed enzymic fatty acid hydroxamate formation. The enzyme was effective only for mono-carboxylic acid, but not for di-carboxylic acids such as azelaic acid. The activity was high with higher fatty acid such as oleic acid. Some of the properties of higher fatty acid hydroxamate formation were investigated.

Olelylhydroxamate was formed with the high concentration of hydroxylamine. The reaction was inhibited by PCMB, but recovered by the addition of SH-compounds (such as cysteine).

On the other hand, when methylacetate was used as a sole carbon source and cell-free extract of Micrococcus sp. hydrolyzed several fatty acid esters. The fatty acid hydroxamate degradation by esterolysis are also discussed.  相似文献   

16.
The strain Pseudomonas sp. strain ADP is able to degrade atrazine as a sole nitrogen source and therefore needs a single source for both carbon and energy for growth. In addition to the typical C source for Pseudomonas, Na2-succinate, the strain can also grow with phenol as a carbon source. Phenol is oxidized to catechol by a multicomponent phenol hydroxylase. Catechol is degraded via the ortho pathway using catechol 1,2-dioxygenase. It was possible to stimulate the strain in order to degrade very high concentrations of phenol (1,000 mg/liter) and atrazine (150 mg/liter) simultaneously. With cyanuric acid, the major intermediate of atrazine degradation, as an N source, both the growth rate and the phenol degradation rate were similar to those measured with ammonia as an N source. With atrazine as an N source, the growth rate and the phenol degradation rate were reduced to ~35% of those obtained for cyanuric acid. This presents clear evidence that although the first three enzymes of the atrazine degradation pathway are constitutively present, either these enzymes or the uptake of atrazine is the bottleneck that diminishes the growth rate of Pseudomonas sp. strain ADP with atrazine as an N source. Whereas atrazine and cyanuric acid showed no significant toxic effect on the cells, phenol reduces growth and activates or induces typical membrane-adaptive responses known for the genus Pseudomonas. Therefore Pseudomonas sp. strain ADP is an ideal bacterium for the investigation of the regulatory interactions among several catabolic genes and stress response mechanisms during the simultaneous degradation of toxic phenolic compounds and a xenobiotic N source such as atrazine.  相似文献   

17.
Alcaligenes spec. strain GL (IMET 11314) is able to grow on glyphosate (N-[phosphonomethyl]glycine) and other phosphonates as sole source of phosphorus. Degradation of glyphosate to inorganic phosphate and sarcosine by this strain is subject to several regulatory principles. While uptake and dephosphonation of glyphosate are regulated by Pi starvation, the intensity of glyphosate degradation is also controlled by the cellular ability to utilize the C-skeleton derived from glyphosate. Depending on the external concentration of glyphosate, the liberated sarcosine is differentially metabolised. Utilization of the sarcosine moiety and complete incorporation of 3-[14C]-label of glyphosate into cellular material occur only in cultures adapted to higher concentrations (5 mM) of the herbicide. At low concentrations of glyphosate (1 mM) only the Pi required by the growing cultures is utilized but not the sarcosine. Initially high rates of glyphosate uptake obtained after Pi-starvation decrease in the presence of low glyphosate concentrations. It is suggested that uptake and metabolism of glyphosate are connected with the expression of the sarcosine metabolizing capacity of the Alcaligenes cells.Abbreviation AMPA aminomethylphosphonic acid  相似文献   

18.
N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.  相似文献   

19.
APseudomonas sp. and aFusarium sp. were isolated from pasture soil. The organisms grew syntrophically on a mineral medium with benzylpenicillin as carbon and nitrogen source. During synergistic degradation of the antibiotic, benzylpenicilloic and benzylpenilloic acid were intermediates. Activities of both organisms were necessary for further decomposition, during which the phenylacetate side chain was degraded. 6-Aminopenicillanic acid did not occur. During syntrophic growth, a red pigment appeared in fungal hyphae growing through bacterial colonies.  相似文献   

20.
With the intensive application of carbendazim in greenhouse production of vegetables and the production of medicinal herbs, there is an increasing need to find a way to remediate carbendazim-contaminated soil. A bacterial stain capable of utilizing carbendazim as the sole source of carbon and energy was isolated from soil. The isolate was designated CBW and identified as a member of Pseudomonas sp. based on its colony morphology, 16S rRNA gene sequencing and Biolog analysis. About 87.1 and 99.1% of carbendazim at concentrations of 1.0 and 10.0 mg l−1 in mineral salts medium were removed by the isolate CBW after incubation for 3 days, respectively. The optimal pH value for the isolate CBW to degrade carbendazim was 7.0. The degradation rate of carbendazim by the isolate CBW was found to increase slightly with temperature. According to the metabolites detected and identified in the present study, it was proposed that carbendazim was first converted to 2-aminobenzimidazole, which was then transformed to 2-hydroxybenzimidazole, 1,2-diaminobenzene, catechol, and finally to carbon dioxide. The results indicate that the isolate CBW is a new bacterial resource for biodegrading carbendazim and might be used for bioremediation of sites heavily contaminated by carbendazim and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号