首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histophilus somni (Haemophilus somnus) is an obligate inhabitant of the mucosal surfaces of bovines and sheep and an opportunistic pathogen responsible for respiratory disease, meningoencephalitis, myocarditis, arthritis, and other systemic infections. The identification of an exopolysaccharide produced by H. somni prompted us to evaluate whether the bacterium was capable of forming a biofilm. After growth in polyvinyl chloride wells a biofilm was formed by all strains examined, although most isolates from systemic sites produced more biofilm than commensal isolates from the prepuce. Biofilms of pneumonia isolate strain 2336 and commensal isolate strain 129Pt were grown in flow cells, followed by analysis by confocal laser scanning microscopy and scanning electron microscopy. Both strains formed biofilms that went through stages of attachment, growth, maturation, and detachment. However, strain 2336 produced a mature biofilm that consisted of thick, homogenous mound-shaped microcolonies encased in an amorphous extracellular matrix with profound water channels. In contrast, strain 129Pt formed a biofilm of cell clusters that were tower-shaped or distinct filamentous structures intertwined with each other by strands of extracellular matrix. The biofilm of strain 2336 had a mass and thickness that was 5- to 10-fold greater than that of strain 129Pt and covered 75 to 82% of the surface area, whereas the biofilm of strain 129Pt covered 35 to 40% of the surface area. Since H. somni is an obligate inhabitant of the bovine and ovine host, the formation of a biofilm may be crucial to its persistence in vivo, and our in vitro evidence suggests that formation of a more robust biofilm may provide a selective advantage for strains that cause systemic disease.  相似文献   

2.
3.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

4.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

5.
AIMS: The aim of this study was to determine the role of curli in attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel. METHODS AND RESULTS: Three curli-deficient strains (43895-, 43894- and E0018-) and three curli over-producing strains (43895+, 43894+ and E0018+) of E. coli O157:H7 were studied. Stainless steel coupons (SSC) were immersed in cell suspensions of each strain for 24 h at 4 degrees C. The number of cells attached to SSC was determined. To determine the ability of attached cells to form biofilm, SSC were immersed in 10% of tryptic soya broth up to 6 days at 22 degrees C. Curli-deficient and curli-producing strains did not differ in their ability to attach to SSC, but only curli-producing strains formed biofilms. CONCLUSIONS: Curli production by E. coli O157:H7 does not affect attachment of cells on stainless steel but curli-producing strains are better able to form biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: Curli production by E. coli O157:H7 enhances its ability to form biofilm on stainless steel, thereby potentially resulting in increased difficulty in removing or killing cells by routine cleaning and sanitizing procedures used in food-processing plants.  相似文献   

6.
Biofilms are communities of microorganisms that are encased in polymeric matrixes and grow attached to biotic or abiotic surfaces. Despite their enhanced ability to resist antimicrobials and components of the immune system in vitro , few studies have addressed the interactions of biofilms with the host at the organ level. Although mycoplasmas have been shown to form biofilms on glass and plastic surfaces, it has not been determined whether they form biofilms on the tracheal epithelium. We developed a tracheal organ-mounting system that allowed the entire surface of the tracheal lumen to be scanned using fluorescence microscopy. We observed the biofilms formed by the murine respiratory pathogen Mycoplasma pulmonis on the epithelium of trachea in tracheal organ culture and in experimentally infected mice and found similar structure and biological characteristics as biofilms formed in vitro . This tracheal organ-mounting system can be used to study interactions between biofilms formed by respiratory pathogens and the host epithelium and to identify the factors that contribute to biofilm formation in vivo .  相似文献   

7.
Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy of ultrathin cryosections, scanning electron microscopy of freeze-fractured samples, and fluorescent in situ hybridization. Biofilms were evident and most prominent in the myocardium, and were associated with a large amount of amorphous extracellular material. Furthermore, Pasteurella multocida was often cultured with H. somni from heart and lung samples. Transposon mutagenesis of H. somni strain 2336 resulted in the generation of mutants that expressed more or less biofilm than the parent strain. Six mutants deficient in biofilm formation had an insertion in the gene encoding for a homolog of filamentous haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation can be identified by transposon mutagenesis.  相似文献   

8.
Single-species microbial biofilm screening for industrial applications   总被引:2,自引:0,他引:2  
While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.  相似文献   

9.
目的对鲍曼不动杆菌临床菌株的生物膜形成能力进行对比研究,并分析生物膜形成的一些可能的影响因素。方法利用在聚苯乙烯板上构建生物膜的技术对51株全耐药的鲍曼不动杆菌的生物膜形成能力进行检测,同时对分离自下呼吸道和无菌体液的各20株鲍曼不动杆菌的生物膜形成能力进行研究,然后对新近报道的鲍曼不动杆菌生物膜形成相关基因abaI在所有菌株中的分布情况进行检测。结果 51株全耐药的鲍曼不动杆菌中35株(68.6%)可以形成生物膜,并且形成生物膜的能力较强。50%(10/20)分离自下呼吸道的鲍曼不动杆菌能够形成生物膜,20株无菌体液中分离的菌株仅有1株可以形成生物膜。78.0%(71/91)鲍曼不动杆菌中abaI基因扩增阳性。结论分离自下呼吸道的鲍曼不动杆菌临床菌株有较强的生物膜形成能力,abaI基因广泛存在于鲍曼不动杆菌临床菌株中。临床在治疗鲍曼不动杆菌感染的同时需要考虑其在感染部位形成生物膜的因素,可能在治疗的同时有必要加入一些对生物膜有穿透性的药物。  相似文献   

10.
AIMS: To determine the potential for Bacillus stearothermophilus cells to form biofilms of significance in dairy manufacture. METHODS AND RESULTS: The ability of isolates of B. stearothermophilus from dairy manufacturing plants to attach to stainless steel surfaces was demonstrated by exposing stainless steel samples to suspensions of spores or vegetative cells and determining the numbers attaching using impedance microbiology. Spores attached more readily than vegetative cells. The attachment of cells to stainless steel was increased 10-100-fold by the presence of milk fouling the stainless steel. The growth of B. stearothermophilus as a biofilm on stainless steel surfaces was determined using a continuously flowing experimental reactor. Vegetative cells were released in greater numbers than spores from biofilms of most strains studied. Biofilms of one strain (B11) were studied in detail. Biofilms of > 106 cells cm-2 formed in the reactor and released approximately 106 cells ml-1 into milk passing over the biofilm. A doubling time of 25 min was calculated for this organism grown as a biofilm. CONCLUSION: The formation of biofilms of thermophilic Bacillus species within the plant appears to be a likely cause of contamination of manufactured dairy products. Methods to control the formation of biofilms in dairy manufacturing plants are required to reduce the contamination of dairy products with thermophilic bacilli. SIGNIFICANCE AND IMPACT OF THE STUDY: Biofilms of B. stearothermophilus growing in dairy manufacturing plants can explain the contamination of dairy products with these bacteria.  相似文献   

11.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25 degrees C, 37 degrees C, and 42 degrees C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37 degrees C or 42 degrees C than at 25 degrees C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25 degrees C than at 37 degrees C or 42 degrees C. On glass surfaces, the biofilms were formed faster but attached less stably at 37 degrees C or 42 degrees C than at 25 degrees C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37 degrees C or 42 degrees C were mycelial mat like and were composed of filamentous cells, while at 25 degrees C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37 degrees C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.  相似文献   

12.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. Cells in biofilms display phenotypic traits that are dramatically different from their free-floating planktonic counterparts, such as increased resistance to anti-microbial agents and protection form host defenses. Here, we describe the characteristics of C. albicans biofilm development using a 96 well microtitre plate model, microscopic observations and a colorimetric method based on the use of a modified tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide, XTT) to monitor metabolic activities of cells within the biofilm. C. albicans biofilm formation was characterized by initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h) and maturation (24-48 h). The XTT-reduction assay showed a linear relationship between cellular density of the biofilm and metabolic activity. Serum and saliva pre-conditioning films increased the initial attachment of C. albicans, but had minimal effect on subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize C. albicans biofilms. Mature C. albicans biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. albicans biofilms displayed a complex three dimensional structure which demonstrated spatial heterogeneity and a typical architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. albicans cells against clinically used fluconazole and amphotericin B as compared to their planktonic counterparts.  相似文献   

13.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

14.
The incidence of fungal infections has increased significantly over the past decades. Very often these infections are associated with biofilm formation on implanted biomaterials and/or host surfaces. This has important clinical implications, as fungal biofilms display properties that are dramatically different from planktonic (free-living) populations, including increased resistance to antifungal agents. Here we describe a rapid and highly reproducible 96-well microtiter-based method for the formation of fungal biofilms, which is easily adaptable for antifungal susceptibility testing. This model is based on the ability of metabolically active sessile cells to reduce a tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide) to water-soluble orange formazan compounds, the intensity of which can then be determined using a microtiter-plate reader. The entire procedure takes approximately 2 d to complete. This technique simplifies biofilm formation and quantification, making it more reliable and comparable among different laboratories, a necessary step toward the standardization of antifungal susceptibility testing of biofilms.  相似文献   

15.
A set of C. jejuni isolates of different origins and flaA-genotypes obtained throughout the broiler meat production chain was tested in this study for a possible correlation of their origin, phylogenetic relationship, and phenotypic properties. Interestingly, the results showed a correlation of the origin and the phylogenetic relationship between the C. jejuni isolates and their ability to form biofilm, but not in their ability to survive at -18, 5, 20, and 48?°C. Two strains, a broiler cloacae isolate and a broiler fillet isolate, were unable to develop biofilm, while most of the C. jejuni isolates originating from meat and surfaces of the slaughterhouse readily formed biofilms after both 24, 48, and 72?h. Interestingly, these biofilm-forming strains were closely related. Furthermore, two strains that were isolated after disinfection developed significantly more biofilms after 24?h of incubation than the remaining strains. A comparative genomic analysis using DNA microarrays showed that the gene contents of strains that efficiently formed biofilms were different from those that did not. The study suggests that biofilm formation might be a lineage specific property, allowing C. jejuni to both survive environmental stress at the slaughterhouse and to attach to the surface of meat.  相似文献   

16.
Acinetobacter baumannii is an opportunistic pathogen that causes serious infections in humans by colonizing and persisting on surfaces normally found in hospital settings. The capacity of this pathogen to persist in these settings could be due to its ability to form biofilms on inanimate surfaces. This report shows that although the ATCC 19606(T) type strain and 8 different clinical isolates form biofilms, there are significant variations in the cell density and microscopic structures of these cell aggregates, with 3 of the isolates forming pellicles floating on the surface of stagnant broth cultures. PCR indicated that, like ATCC 19606(T), all 8 clinical isolates harbor all the genetic components of the CsuA/BABCDE chaperone-usher pili assembly system, which is needed for biofilm formation on plastic. Pili detection in cells of all strains examined supports the presence and function of a pilus assembly system. However, only one of them produced the putative ATCC 19606(T) CsuA/B pilin subunit protein. Hydrophobicity tests and motility assays also showed significant variations among all tested strains and did not result in direct correlations between the biofilm phenotype and cell properties that could affect biofilm formation on abiotic surfaces. This lack of correlation among these 3 phenotypes may reflect some of the variations already reported with this pathogen, which may pose a challenge in the treatment of the infections this pathogen causes in humans using biofilm formation on abiotic surfaces as a target.  相似文献   

17.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

18.
Streptococcus pneumoniae colonizes the human upper respiratory tract, and this asymptomatic colonization is known to precede pneumococcal disease. In this report, chemically defined and semisynthetic media were used to identify the initial steps of biofilm formation by pneumococcus during growth on abiotic surfaces such as polystyrene or glass. Unencapsulated pneumococci adhered to abiotic surfaces and formed a three-dimensional structure about 25 microm deep, as observed by confocal laser scanning microscopy and low-temperature scanning electron microscopy. Choline residues of cell wall teichoic acids were found to play a fundamental role in pneumococcal biofilm development. The role in biofilm formation of choline-binding proteins, which anchor to the teichoic acids of the cell envelope, was determined using unambiguously characterized mutants. The results showed that LytA amidase, LytC lysozyme, LytB glucosaminidase, CbpA adhesin, PcpA putative adhesin, and PspA (pneumococcal surface protein A) mutants had a decreased capacity to form biofilms, whereas no such reduction was observed in Pce phosphocholinesterase or CbpD putative amidase mutants. Moreover, encapsulated, clinical pneumococcal isolates were impaired in their capacity to form biofilms. In addition, a role for extracellular DNA and proteins in the establishment of S. pneumoniae biofilms was demonstrated. Taken together, these observations provide information on conditions that favor the sessile mode of growth by S. pneumoniae. The experimental approach described here should facilitate the study of bacterial genes that are required for biofilm formation. Those results, in turn, may provide insight into strategies to prevent pneumococcal colonization of its human host.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号